Publications by authors named "Michele Kaloss"

A potentially promising treatment of metastatic cancer is the systemic delivery of oncolytic adenoviruses. This requires engineering viruses which selectively replicate in tumors. We have constructed such an oncolytic adenovirus, OAS403, in which two early region genes are under the control of tumor-selective promoters that play a role in two key pathways involved in tumorigenesis.

View Article and Find Full Text PDF

Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice.

View Article and Find Full Text PDF

While 51 human adenoviral serotypes have been identified to date, the vast majority of adenoviral vectors designed for gene transfer have been generated in the adenovirus serotype 5 (Ad5) backbone. Viral infections caused by Ad5 are endemic in most human populations and the majority of humans carry preexisting humoral and/or cellular immunity to Ad5 which may severely limit the use of Ad5-based vectors for gene therapy applications. To circumvent this preexisting Ad5 immunity, we have identified Ad35 as an alternative adenoviral serotype to which the majority of humans do not have neutralizing antibodies.

View Article and Find Full Text PDF

The use of oncolytic adenoviruses as a cancer therapeutic is dependent on the lytic properties of the viral life cycle, and the molecular differences between tumor cells and nontumor cells. One strategy for achieving safe and efficacious adenoviral therapies is to control expression of viral early gene(s) required for replication with tumor-selective promoter(s), particularly those active in a broad range of cancer cells. The retinoblastoma tumor suppressor protein (Rb) pathway is dysregulated in a majority of human cancers.

View Article and Find Full Text PDF

Systemic administration of adenoviral vectors leads to a widespread distribution of vector. Therefore, targeting of adenoviral vectors to specific tissues or cell types will require methods to ablate the normal tropism of the vector simultaneously with the introduction of new receptor specificities. To inhibit native receptor binding, we mutated residues in the AB loop of the adenovirus type 5 (Ad5) fiber.

View Article and Find Full Text PDF

Adenovirus binds to mammalian cells via interaction of fiber with the coxsackie-adenovirus receptor (CAR). Redirecting adenoviral vectors to enter target cells via new receptors has the advantage of increasing the efficiency of gene delivery and reducing nonspecific transduction of untargeted tissues. In an attempt to reach this goal, we have produced bifunctional molecules with soluble CAR (sCAR), which is the extracellular domain of CAR fused to peptide-targeting ligands.

View Article and Find Full Text PDF

Gutless adenoviral vectors are devoid of all viral coding regions and display reduced cytotoxicity, diminished immunogenicity, and an increased coding capacity compared with early generation vectors. Using hemophilia A, a deficiency in clotting factor VIII (FVIII), as a model disease, we generated and evaluated a gutless vector encoding human FVIII. The FVIII gutless vector grew to high titer and was reproducibly scaled-up from vector seed lots.

View Article and Find Full Text PDF