Publications by authors named "Michele Jonzier-Perey"

Pharmacogenetic tests and therapeutic drug monitoring may considerably improve the pharmacotherapy of depression. The aim of this study was to evaluate the relationship between the efficacy of mirtazapine (MIR) and the steady-state plasma concentrations of its enantiomers and metabolites in moderately to severely depressed patients, taking their pharmacogenetic status into account. Inpatients and outpatients (n = 45; mean age, 51 years; range, 19-79 years) with major depressive episode received MIR for 8 weeks (30 mg/d on days 1-14 and 30-45 mg/d on days 15-56).

View Article and Find Full Text PDF

Background And Objective: Mirtazapine is a tetracyclic antidepressant drug available as a racemic mixture of S(+)- and R(-)-mirtazapine. These enantiomers have different pharmacological properties, and both contribute to the clinical and adverse effects of the drug. Cytochrome P450 (CYP) 2D6 has been implicated in the metabolism of S(+)-mirtazapine.

View Article and Find Full Text PDF

Little information exists on the concentrations of recent antidepressants and their metabolites in cerebrospinal fluid (CSF). Using a stereoselective method, we measured plasma and CSF levels of mirtazapine (MIR), N-demethylmirtazapine and 8-OH-MIR in 3 depressed patients treated with racemic MIR (45 mg/day) for 4 weeks. S-(+)-MIR is considered to be the antidepressant enantiomer, but only R-(-)-MIR reached measurable concentrations in CSF.

View Article and Find Full Text PDF

Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode.

View Article and Find Full Text PDF

Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.

View Article and Find Full Text PDF