Background And Objectives: Multiple myeloma (MM) growth in the bone marrow is associated with increased osteoclast activity and a reduced number of osteoblasts. Experimental studies suggest that bone disease drives the progression of MM. Whereas those studies focused on the critical role of myeloma-induced osteoclastogenesis in disease progression, little is known about the impact of osteoblasts and increased bone formation on MM.
View Article and Find Full Text PDFWe have investigated the interaction between tumor cells and specific cells in their microenvironment using myeloma as a model. The role of myeloma-induced osteoclastogenesis in the disease was studied ex vivo. Myeloma plasma cells freshly purified from patients' bone marrow attracted committed osteoclast (OC) precursors (n = 9; P < 0.
View Article and Find Full Text PDFTo determine the mechanism of thalidomide's antimyeloma efficacy, we studied the drug's activity in our severe combined immunodeficiency-human (SCID-hu) host system for primary human myeloma. In this model, tumor cells interact with the human microenvironment to produce typical myeloma manifestations in the hosts, including stimulation of neoangiogenesis. Because mice are not able to metabolize thalidomide efficiently, SCID-hu mice received implants of fetal human liver fragments under the renal capsule in addition to subcutaneous implants of the fetal human bone.
View Article and Find Full Text PDF