Publications by authors named "Michele Forlin"

Article Synopsis
  • Glioblastoma (GBM) is a serious brain tumor that mainly affects adults, and patients typically live around 14 months after diagnosis.
  • Scientists have created a new tool called SynergySeq to find the best combinations of existing drugs to treat GBM, using genetic data to help them.
  • By looking at how genes behave in GBM patients and combining this with drug information, researchers hope to discover new ways to help treat this tough disease in the future.
View Article and Find Full Text PDF

The NIH-funded LINCS Consortium is creating an extensive reference library of cell-based perturbation response signatures and sophisticated informatics tools incorporating a large number of perturbagens, model systems, and assays. To date, more than 350 datasets have been generated including transcriptomics, proteomics, epigenomics, cell phenotype and competitive binding profiling assays. The large volume and variety of data necessitate rigorous data standards and effective data management including modular data processing pipelines and end-user interfaces to facilitate accurate and reliable data exchange, curation, validation, standardization, aggregation, integration, and end user access.

View Article and Find Full Text PDF

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies.

View Article and Find Full Text PDF

The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging.

View Article and Find Full Text PDF

Background: One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets.

View Article and Find Full Text PDF

Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with , , , and . Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq.

View Article and Find Full Text PDF

Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data.

View Article and Find Full Text PDF

Based on UV-Vis, NMR, and EPR spectroscopies and DFT and molecular dynamics calculations, a model prebiotic [2Fe-2S] tripeptide was shown to accept and donate electrons. Duplications of the tripeptide sequence led to a protoferredoxin with increased stability. Duplications of primitive peptides may have contributed to the formation of contemporary ferredoxins.

View Article and Find Full Text PDF

Model prebiotic dipeptide sequences were identified by bioinformatics and DFT and molecular dynamics calculations. The peptides were then synthesized and evaluated for metal affinity and specificity. Cysteine containing dipeptides were not associated with metal affinities that followed the Irving-Williams series but did follow the concentration trends found in seawater.

View Article and Find Full Text PDF

An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched.

View Article and Find Full Text PDF

Previous efforts to control cellular behaviour have largely relied upon various forms of genetic engineering. Once the genetic content of a living cell is modified, the behaviour of that cell typically changes as well. However, other methods of cellular control are possible.

View Article and Find Full Text PDF

The cell-free transcription-translation of multiple proteins typically exploits genes placed behind strong transcriptional promoters that reside on separate pieces of DNA so that protein levels can be easily controlled by changing DNA template concentration. However, such systems are not amenable to the construction of artificial cells with a synthetic genome. Herein, we evaluated the activity of a series of T7 transcriptional promoters by monitoring the fluorescence arising from a genetically encoded Spinach aptamer.

View Article and Find Full Text PDF

To facilitate the construction of cell-free genetic devices, we evaluated the ability of 17 different fluorescent proteins to give easily detectable fluorescence signals in real-time from in vitro transcription-translation reactions with a minimal system consisting of T7 RNA polymerase and E. coli translation machinery, i.e.

View Article and Find Full Text PDF

Synthetic biologists typically construct new pathways within existing cells. While useful, this approach in many ways ignores the undefined but necessary components of life. A growing number of laboratories have begun to try to remove some of the mysteries of cellular life by building life-like systems from non-living component parts.

View Article and Find Full Text PDF

Context: High-mobility group A1 (HMGA1) protein is a key regulator of insulin receptor (INSR) gene expression. We previously identified a functional HMGA1 gene variant in 2 insulin-resistant patients with decreased INSR expression and type 2 diabetes mellitus (DM).

Objective: To examine the association of HMGA1 gene variants with type 2 DM.

View Article and Find Full Text PDF