Living tissue is able to withstand large stresses in everyday life, yet it also actively adapts to dynamic loads. This remarkable mechanical behaviour emerges from the interplay between living cells and their non-living extracellular environment. Here we review recent insights into the biophysical mechanisms involved in the reciprocal interplay between cells and the extracellular matrix and how this interplay determines tissue mechanics, with a focus on connective tissues.
View Article and Find Full Text PDFFor research on tendon injury, many different animal models are utilized; however, the extent to which these species simulate the clinical condition and disease pathophysiology has not yet been critically evaluated. Considering the importance of inflammation in tendon disease, this study compared the cellular and molecular features of inflammation in tenocytes of humans and four common model species (mouse, rat, sheep, and horse). While mouse and rat tenocytes most closely equalled human tenocytes' low proliferation capacity and the negligible effect of inflammation on proliferation, the wound closure speed of humans was best approximated by rats and horses.
View Article and Find Full Text PDF