Publications by authors named "Michele Ernoult-Lange"

Article Synopsis
  • Understanding RNA targeting to membraneless organelles like P-bodies (PBs) is crucial for revealing their functions in cells.
  • This study shows that PBs in HEK293 cells undergo significant changes in RNA content throughout the cell cycle, with different mRNA localization patterns appearing at various stages (G1, S, G2).
  • The findings suggest that PBs actively sort mRNAs based on their translation status and characteristics, implying that they play a more dynamic role than merely housing excess untranslated mRNAs.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the relationship between mRNA translation and decay, revealing that this interplay is not fully understood.
  • By analyzing various transcriptomes, it was found that mRNA content (specifically GC vs. AU richness) significantly influences mRNA localization, translation efficiency, and stability.
  • The findings indicate that AU-rich mRNAs are less efficiently translated and follow different decay pathways compared to GC-rich mRNAs, highlighting a complex system of post-transcriptional regulation in human cells.
View Article and Find Full Text PDF
Article Synopsis
  • * The variants disrupt DDX6's function in processing bodies, which are critical for mRNA regulation, leading to defective assembly and interactions with protein partners in cell lines.
  • * Findings suggest that DDX6 could be linked to a neurodevelopmental syndrome and should be included in the growing category of disorders associated with RNA helicases, alongside DDX3X and DHX30.
View Article and Find Full Text PDF

Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs.

View Article and Find Full Text PDF

4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs.

View Article and Find Full Text PDF

P-bodies are cytoplasmic ribonucleoprotein granules involved in posttranscriptional regulation. DDX6 is a key component of their assembly in human cells. This DEAD-box RNA helicase is known to be associated with various complexes, including the decapping complex, the CPEB repression complex, RISC, and the CCR4/NOT complex.

View Article and Find Full Text PDF

Translational repression is achieved by protein complexes that typically bind 3' UTR mRNA motifs and interfere with the formation of the cap-dependent initiation complex, resulting in mRNPs with a closed-loop conformation. We demonstrate here that the human DEAD-box protein Rck/p54, which is a component of such complexes and central to P-body assembly, is in considerable molecular excess with respect to cellular mRNAs and enriched to a concentration of 0.5 mM in P-bodies, where it is organized in clusters.

View Article and Find Full Text PDF

Micro-RNAs (miRNAs) are major actors of RNA interference (RNAi), a regulation pathway which leads to translational repression and/or degradation of specific mRNAs. They provide target specificity by incorporating into the RISC complex and guiding its binding to mRNA. Since the discovery of RNAi, many progresses have been made on the mechanism of action of the RISC complex and on the identification of target mRNAs.

View Article and Find Full Text PDF

P-bodies are cytoplasmic granules that are linked to mRNA decay, mRNA storage, and RNA interference (RNAi). They are known to interact with stress granules in stressed cells, and with late endosomes. Here, we report that P-bodies also interact with mitochondria, as previously described for P-body-related granules in germ cells.

View Article and Find Full Text PDF

Human MOK2 is a DNA-binding transcriptional repressor. Previously, we identified nuclear lamin A/C proteins as protein partners of hsMOK2. Furthermore, we found that a fraction of hsMOK2 protein was associated with the nuclear matrix.

View Article and Find Full Text PDF

The translational regulator CPEB1 plays a major role in the control of maternal mRNA in oocytes, as well as of subsynaptic mRNAs in neurons. Although mainly cytoplasmic, we found that CPEB1 protein is continuously shuttling between nucleus and cytoplasm. Its export is controlled by two redundant NES motifs dependent on the nuclear export receptor Crm1.

View Article and Find Full Text PDF

Background Information: hsMOK2 (human MOK2) is a DNA-binding transcriptional repressor. For example, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the CRX (cone-rod homeobox protein) transcriptional activator for DNA binding. Previous studies have shown an interaction between hsMOK2 and nuclear lamin A/C.

View Article and Find Full Text PDF

The human and murine MOK2 proteins are factors able to recognize both DNA and RNA through their zinc finger motifs. This dual affinity of MOK2 suggests that MOK2 might be involved in transcription and post-transcriptional regulation of MOK2 target genes. The IRBP gene contains two MOK2-binding elements, a complete 18 bp MOK2-binding site located in intron 2 and the essential core MOK2-binding site (8 bp of conserved 3'-half-site) located in the IRBP promoter.

View Article and Find Full Text PDF