In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective.
View Article and Find Full Text PDFFunneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer, and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions.
View Article and Find Full Text PDFWe investigate the possibility of extracting the probability distribution of the effective environmental tuning and coupling modes during the nonadiabatic relaxation through a conical intersection. Dynamics are dealt with an open quantum system master equation by partitioning a multistate electronic subsystem out of all the nuclear vibrators. This is an alternative to the more usual partition retaining the tuning and coupling modes of a conical intersection in the active subsystem coupled to a residual bath.
View Article and Find Full Text PDFA multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters.
View Article and Find Full Text PDFCryptochromes and photolyases are flavoproteins that may undergo ultrafast charge separation upon electronic excitation of their flavin cofactors. Charge separation involves chains of three or four tryptophan residues depending on the protein of interest. The molecular mechanisms of these processes are not completely clear.
View Article and Find Full Text PDFFollowing the recent quantum dynamics investigation of the charge transfer at an oligothiophene-fullerene heterojunction by the multi-configuration time dependent Hartree method [H. Tamura, R. Martinazzo, M.
View Article and Find Full Text PDFWe numerically implement quantum algorithms in hyperfine levels of ultracold polar molecules. Logical operations are driven by pulses optimized by optimal control theory. All implementations take place in the lowest two rotational levels of the ground vibrational state of the ground (1)Σ(+) electronic state, exploiting the richness of the hyperfine energy structure and state mixing in static external fields.
View Article and Find Full Text PDFThe implementation of a quantum-controlled full adder-subtractor of two binary digits and of a "carry in" or a "borrow in" is simulated by encoding four qubits in the vibrational eigenstates of a tetra-atomic molecule (trans-HONO). The laser field of the gate is computed using optimal control theory by treating dynamics in full dimensionality. A controlled qubit enforces the addition or the subtraction.
View Article and Find Full Text PDF