Publications by authors named "Michele Del Carlo"

Lupin seeds are recognized for their nutritional value and potential health benefits, but they contain also a significant amount of alkaloids, an anti-nutritive class of compounds, which vary significantly in composition within and between species due to environmental factors. In this study, we developed a predictive multi-experiment approach using ultra-high performance liquid chromatography coupled with triple quadrupole with linear ionic trap tandem mass spectrometry (UHPLC-QqQ-LIT-MS/MS) for comprehensive alkaloid profiling and geographical classification of L. samples originating from four different Italian regions.

View Article and Find Full Text PDF

The demand for plant-based protein sources in the food industry has significantly increased in recent years, leading to the introduction of legume-based products as meat substitutes. However, concerns regarding food quality have emerged, particularly related to the presence of mycotoxins. This study addresses the need for the sensitive detection of phomopsins (PHOs), a class of peptide-based toxins.

View Article and Find Full Text PDF

Background: Salt has been identified as an elicitor that can increase the accumulation of phytochemicals in seedlings during the germination process. However, the salinity level required to maximize the yield of phytochemicals, particularly phenolic compounds, needs further investigation for several plant species. To address this issue, we imposed increasing levels of salinity (NaCl solutions) on the sprouting substrate of Triticum durum (var.

View Article and Find Full Text PDF

An electroanalytical lab-on-a-strip device for the direct extra-virgin olive oil (EVOO) antioxidant capacity evaluation is proposed. The lab-made device is composed of a CO laser nanodecorated sensor combined with a cutter-plotter molded paper-strip designed for EVOOs sampling and extraction. Satisfactory performance towards the most representative o-diphenols of EVOOs i.

View Article and Find Full Text PDF

Industrial wastes have become elective sustainable sources to obtain materials for electronic/electroanalytical purposes; on the other hand, easy and green strategies to include semiconductor 2D graphene-like materials in conductive networks are highly required. In this work, 1D/2D nanocomposites (NCs) based on nanofibrillar biochar (BH) from paper industry waste and transition metal dichalcogenides (TMDs: MoS, WS, MoSe, and WSe), were prepared in water via liquid phase exfoliation (LPE) using sodium cholate as bioderived surfactant. The TMD amount in the NCs has been carefully optimized, searching for the best compromise between electron transfer ability and electroanalytical performances.

View Article and Find Full Text PDF

Noble metal nanoparticles (MNPs), have represented the keystone of a plethora of (bio)sensing analytical strategies because of their unique physicochemical features, becoming unique tools in the analytical scenario; in particular, MNPs localized surface plasmon resonance (LSPR) offers infinite analytical possibilities. In this work, the scaling-up from colloidal MNPs to their integration in solid substrates is overviewed, and the relative sensing and biosensing optical strategies based on LSPR changes are systematically treated in accordance with the supporting substrate employed. Recent literature and key papers reporting MNPs integration into solid substrates are considered, paying particular attention to the MNPs-based event into/onto the solid support and the related plasmonic change used as analytical signal.

View Article and Find Full Text PDF

Rapid volatile organic compounds (VOCs) detection is a hot topic today; in this framework nanomaterials and their tailorable chemistry offer a plethora of compelling opportunities. In this work, Group VI transition metal dichalcogenides (TMDs, i.e.

View Article and Find Full Text PDF

This work was aimed at investigating the effects of rate and timing of nitrogen fertilization applied to a maternal wheat crop on phytochemical content and antioxidant activity of edible sprouts and wheatgrass obtained from offspring grains. We hypothesized that imbalance in N nutrition experienced by the mother plants translates into transgenerational responses on seedlings obtained from the offspring seeds. To this purpose, we sprouted grains of two bread wheat cultivars (Bologna and Bora) grown in the field under four N fertilization schedules: constantly well N fed with a total of 300 kg N ha; N fed only very early, i.

View Article and Find Full Text PDF

In this work, a redox-graphene (Rx-Gr) film with electron-mediating ability has been integrated into a modular flexible pocket device, giving rise to a reusable biosensing platform. The Rx-Gr has been obtained in water from graphite taking advantage of catechin, a redox-antioxidant, able to assist the sonochemical layered-material exfoliation, conferring electron mediating feature. A film composed exclusively of Rx-Gr has been transferred via thermal rolling onto a flexible PET-support that was used as the biosensor base.

View Article and Find Full Text PDF
Article Synopsis
  • A novel Prussian blue-based electrode array (PBEA) was developed on a flexible PET substrate for in-situ culturing of HeLa cells and real-time detection of hydrogen peroxide (HO) release.
  • The PBEA is affordable to produce using simple desktop equipment, making it suitable for high-throughput analysis of cell activity and oxidative stress.
  • Effective electrochemical sensing was achieved, with a limit of detection of 1.9 μM for hydrogen peroxide, allowing for the evaluation of oxidative stress in cells treated with specific agents like cocoa polyphenols.
View Article and Find Full Text PDF

In this work, for the first time, the direct usability of natural products, catechins (CT) and cocoa powder (CO), as electrochemical mediators able to modify a carbon black modified screen-printed electrode (SPE-CB) is proved, and, as proof of applicability, free (GSH) and total glutathione (GSH + GSSG) in blood samples is successfully determined. Noteworthy, the cocoa powder (naturally rich in catechins), dissolved in DMSO, was able to give rise to a useful highly redox-active catechol-quinone surface-confined system onto a carbon black nanoparticles modified screen-printed electrode (SPE-CB-CO - Cocoatrode), giving rise to a similar behaviour obtained with pure catechins (SPE-CB-CT). The electrodeposition process has been carefully studied, the resulting immobilized natural mediator (obtained using both CT and CO) features investigated, and the performance of the resulting sensors (SPE-CB-CT and Cocoatrode) tested and compared.

View Article and Find Full Text PDF

A new hybrid nanomaterial is used in a screen-printed electrode (SPE) for sensing of the ortho-diphenols oleuropein (OLEU) and hydroxytyrosol (HYT) in extra virgin olive oil (EVOO) and related samples. The hybrid material consists of carbon black (CB) and molybdenum disulfide (MoS). In comparison with individual nanomaterials, CB-MoS exhibits improved charge-transfer ability, low charge-transfer resistance, high electrical conductivity and enhanced electrocatalysis.

View Article and Find Full Text PDF

This is a review of recent affinity-based approaches that detect pesticides in food. The importance of the quantification and monitoring of pesticides is firstly discussed, followed by a description of the different approaches reported in the literature. The different sensing approaches are reported according to the different recognition element used: antibodies, aptamers, or molecularly imprinted polymers.

View Article and Find Full Text PDF

An electrochemical screening assay for the detection of phenyl carbamates (i.e. carbaryl, carbofuran, isoprocarb and fenobucarb) was developed and applied to grains samples (i.

View Article and Find Full Text PDF

Background: Nano-PCR is a recent tool that is used in viral diseases diagnosis. The technique depends on the fundamental effects of gold nanoparticles (AuNPs) and is considered a very effective and sensitive tool in the diagnosis of different diseases including viral diseases. Although several techniques are currently available to diagnose foot and mouth disease virus (FMDV), a highly sensitive, highly specific technique is needed for specific diagnosis of the disease.

View Article and Find Full Text PDF

Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event.

View Article and Find Full Text PDF

A single-step, rapid (10 min), sensitive silver nanoparticles (AgNPs) based spectrophotometric method for antioxidant capacity (AOC) assay has been developed. The assay is based on the ability of natural polyphenols to reduce Ag(I) and stabilize the produced AgNPs(0) at room temperature. Localized surface plasmon resonance (LSPR) of AgNPs at ≈420 nm is then measured.

View Article and Find Full Text PDF

Carbon black nanoparticle (CBNP) press-transferred film-based transducers for the molecular detection at the microscale level were proposed for the first time. Current-sensing atomic force microscopy (CS-AFM) revealed that the CBNP films were effectively press-transferred, retaining their good conductivity. A significant correlation between the morphology and the resistance was observed.

View Article and Find Full Text PDF

In this work, a rapid and simple gold nanoparticle (AuNPs)-based colorimetric assay meets a new type of synthesis of AuNPs in organic medium requiring no sample extraction. The AuNPs synthesis extraction-free approach strategically involves the use of dimethyl sulfoxide (DMSO) acting as an organic solvent for simultaneous sample analyte solubilization and AuNPs stabilization. Moreover, DMSO works as a cryogenic protector avoiding solidification at the temperatures used to block the synthesis.

View Article and Find Full Text PDF

A simple gold nanoparticles (AuNPs) based colorimetric assay for the antioxidant activity determination has been developed. The AuNP formation is mediated by extra virgin olive oil (EVOO's) endogenous polyphenols; the reaction is described by a sigmoidal curve. The ratio KAuNPs/Xc(50) (slope of the linear part of the sigmoid/concentration at half value of the absorbance) was found to be the optimal parameter to report the antioxidant capacity with respect to the single KAuNPs or Xc(50) values.

View Article and Find Full Text PDF

Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO.

View Article and Find Full Text PDF

The aim of this research was to determine the effect of rearing systems for pig production, as concerns performance, meat lipid content, the fatty acid profile, histidinic antioxidants, coenzyme Q10, and TBARs. One hundred pigs were assigned to one of three treatments: intensively reared commercial hybrid pig (I), free range commercial hybrid pig (FR) or organically reared crossbred pig (O), according to organic EU Regulations. I pigs showed the best productive performance, but FR and O increased: C20:1n9, Δ9-desaturase (C18) and thioesterase indices in meat.

View Article and Find Full Text PDF

Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH.

View Article and Find Full Text PDF

Virtual and experimental affinity binding properties of 5 different peptides (cysteinylglycine, glutathione, Cys-Ile-His-Asn-Pro, Cys-Ile-Gln-Pro-Val, Cys-Arg-Gln-Val-Phe) vs. 14 volatile compounds belonging to relevant chemical classes were evaluated. The peptides were selected in order to have a large variability in physicochemical characteristics (including length).

View Article and Find Full Text PDF

This study describes a method for the screening of methylenedioxyamphetamine- and piperazine-derived compounds in urine by liquid chromatography-tandem mass spectrometry. These substances, characterized by possessing common moieties, are screened using precursor ion and neutral loss scan mode and then quantified in multiple reaction monitoring acquisition mode. Based on the product-ion spectra of different known molecules, chosen as 'model', characteristic neutral losses and product ions were selected: piperazines were detected in precursor ion scan of m/z 44 and neutral loss of 43 and 86 while amphetamines in precursor ion scan of m/z 133, 135 and 163.

View Article and Find Full Text PDF