The gas-phase basicity (GB) of the flexible polyfunctional N(1),N(1)-dimethyl-N(2)-beta-(2-pyridylethyl)formamidine (1) containing two potential basic sites (the ring N-aza and the chain N-imino) is obtained from proton-transfer equilibrium constant measurements, using Fourier-transform ion-cyclotron resonance mass spectrometry. Comparison of the experimental GB obtained for 1 with those reported for model amidines and azines indicates that the chain N-imino in the amidine group is the favored site of protonation. Semiempirical (AM1) and ab initio calculations (HF, MP2, and DFT), performed for 1 and its protonated forms, confirm this interpretation.
View Article and Find Full Text PDFThe gas-phase lithium cation basicities (LCBs; Gibbs free energy of binding) of ethyl-, n-butyl-, and n-heptylbenzene have been measured by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of the corresponding complexes and their relative stabilities were investigated through the use of B3LYP/6-311G(+)(3df,2p)//B3LYP/6-31G(d) density functional theory calculations. For n-butylbenzene and n-heptylbenzene, the most stable adducts correspond to pi complexes in which the alkyl chain coils toward the aromatic ring to favor its interaction with the metal cation.
View Article and Find Full Text PDFThe gas-phase lithium cation basicities (LCBs) of naphthalene, azulene, anthracene, and phenanthrene were measured by means of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of the corresponding complexes and their relative stabilities were investigated at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level of theory. In the theoretical survey, pyrene, coronene, [3]phenylene, angular [3]phenylene, and circumcoronene were also included.
View Article and Find Full Text PDF