Publications by authors named "Michele Crotti"

Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E.

View Article and Find Full Text PDF

Multi-enzymatic cascades exploiting engineered enzymes are a powerful tool for the tailor-made synthesis of complex molecules from simple inexpensive building blocks. In this work, we engineered the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) into an effective aldolase with 160-fold increased activity compared to 4-OT wild type. Subsequently, we applied the evolved 4-OT variant to perform an aldol condensation, followed by an epoxidation reaction catalyzed by a previously engineered 4-OT mutant, in a one-pot two-step cascade for the synthesis of enantioenriched epoxides (up to 98 % ee) from biomass-derived starting materials.

View Article and Find Full Text PDF

Gene duplication and fusion are among the primary natural processes that generate new proteins from simpler ancestors. Here we adopted this strategy to evolve a promiscuous homohexameric 4-oxalocrotonate tautomerase (4-OT) into an efficient biocatalyst for enantioselective Michael reactions. We first designed a tandem-fused 4-OT to allow independent sequence diversification of adjacent subunits by directed evolution.

View Article and Find Full Text PDF

The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product.

View Article and Find Full Text PDF

Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H O ) to accomplish enantiocomplementary epoxidations of various α,β-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,β-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50-80 %) were achieved.

View Article and Find Full Text PDF

The efficient engineering of iminium biocatalysis has drawn considerable attention, with many applications in pharmaceutical synthesis. Here, we report a tailor-made iminium-activated colorimetric "turn-on" probe, specifically designed as a prescreening tool to facilitate engineering of iminium biocatalysis. Upon complexation of the probe with the catalytic Pro-1 residue of the model enzyme 4-oxalocrotonate tautomerase (4-OT), a brightly colored merocyanine-dye-type structure is formed.

View Article and Find Full Text PDF

Ene reductases from the Old Yellow Enzyme (OYE) family are industrially interesting enzymes for the biocatalytic asymmetric reduction of alkenes. To access both enantiomers of the target reduced products, stereocomplementary pairs of OYE enzymes are necessary, but their natural occurrence is quite limited. A library of wild type ene reductases from different sources was screened in the stereoselective reduction of a set of representative α-alkyl-β-arylenones to investigate the naturally available biodiversity.

View Article and Find Full Text PDF

The use of pheromones in the integrated pest management of insects is currently considered a sustainable and environmentally benign alternative to hazardous insecticides. 4-Methylheptan-3-ol is an interesting example of an insect pheromone, because its stereoisomers are active towards different species. All four possible stereoisomers of this compound were prepared from 4-methylhept-4-en-3-one by a one-pot procedure in which the two stereogenic centres were created during two sequential reductions catalysed by an ene-reductase (ER) and an alcohol dehydrogenase (ADH), respectively.

View Article and Find Full Text PDF

The reduction of C=C double bond, a key reaction in organic synthesis, is mostly achieved by traditional chemical methods. Therefore, the search for enzymes capable of performing this reaction is rapidly increasing. Old Yellow Enzymes (OYEs) are flavin-dependent oxidoreductases, initially isolated from Saccharomyces pastorianus.

View Article and Find Full Text PDF

Enantiopure 2-methyl-3-substituted tetrahydrofurans are key precursors of several biologically active products (drugs, flavors, and agrochemicals). Thus, a stereocontrolled and efficient methodology for the obtainment of these synthons is highly desirable. We exploited a two-step multienzymatic stereoselective cascade reduction of α-bromo-α,β-unsaturated ketones to give the corresponding bromohydrins in good yields, with high ee and de values.

View Article and Find Full Text PDF

A fast and sensitive colorimetric assay (FRED, fast and reliable ene-reductases detection) that allows the estimation of levels of conversion of ene-reductase (ER)-catalysed reactions has been developed. The activated olefin is reduced by ER at the expense of NAD(P)H cofactor, whose regeneration is carried out in situ by the glucose/glucose dehydrogenase system. Subsequently, the consumption of the co-substrate glucose is determined colorimetrically by a multienzymatic system.

View Article and Find Full Text PDF

Bioeconomy stresses the need of green processes promoting the development of new methods for biocatalyzed alkene reductions. A functional screening of 28 fungi belonging to Ascomycota, Basidiomycota, and Zygomycota isolated from different habitats was performed to analyze their capability to reduce C=C double bonds towards three substrates (cyclohexenone, α-methylnitrostyrene, and α-methylcinnamaldehyde) with different electron-withdrawing groups, i.e.

View Article and Find Full Text PDF