Publications by authors named "Michele Chirichella"

Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs.

View Article and Find Full Text PDF

Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles.

View Article and Find Full Text PDF

Ex vivo gene expression and miRNA profiling of Eomes Tr1-like cells suggested that they represent a differentiation stage that is intermediate between Th1-cells and cytotoxic CD4 T-cells. Several microRNAs were downregulated in Eomes Tr1-like cells that might inhibit Tr1-cell differentiation. In particular, miR-92a targeted Eomes, while miR-125a inhibited IFN-g and IL-10R expression.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers separated human memory T lymphocytes based on their inflammatory cytokine production to identify factors influencing pathogenic T cell behavior.
  • * They discovered that a specific gene signature and the activation of the NF-κB pathway, along with the repressor BHLHE40, regulate the proinflammatory characteristics of these T cells, potentially linking it to diseases.
View Article and Find Full Text PDF

In mammals, the 5'-methylcytosine (5mC) modification in the genomic DNA contributes to the dynamic control of gene expression. 5mC erasure is required for the activation of developmental programs and occurs either by passive dilution through DNA replication, or by enzymatic oxidation of the methyl mark to 5-hydroxymethylcytosine (5hmC), which can persist as such or undergo further oxidation and enzymatic removal. The relative contribution of each mechanism to epigenetic control in dynamic biological systems still remains a compelling question.

View Article and Find Full Text PDF

The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression post-transcriptionally. They have emerged as important modulators of T lymphocyte biology, influencing cell activation, differentiation and proliferation in response to environmental signals. Here, we will discuss how miRNAs expressed by T cells can influence two key aspects of tumorigenesis, namely the direct, cell-intrinsic oncogenic transformation of T lymphocytes, as well as the indirect effects on tumor growth mediated by altered immune surveillance.

View Article and Find Full Text PDF

Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e.

View Article and Find Full Text PDF

The ability to selectively interfere with post-translationally modified proteins would have many biological and therapeutic applications. However, post-translational modifications cannot be selectively targeted by nucleic-acid-based interference approaches. Here we describe post-translational intracellular silencing antibody technology (PISA), a method for selecting intrabodies against post-translationally modified proteins.

View Article and Find Full Text PDF