Publications by authors named "Michele Cassidy"

Sewer overflows are an environmental concern due to their potential to introduce contaminants that can adversely affect downstream aquatic ecosystems. As these overflows can occur during rainfall events, the influence of rainwater ingress from inflow and infiltration on raw untreated wastewater (influent) within the sewer is a critical factor influencing the dilution and toxicity of the contaminants. The Vineyard sewer carrier in the greater city of Sydney, Australia, was selected for an ecotoxicological investigation of a sanitary (separate from stormwater) sewerage system and a wet-weather overflow (WWO).

View Article and Find Full Text PDF

This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season.

View Article and Find Full Text PDF
Article Synopsis
  • This research explored how fast different human wastewater markers and viruses decay in two estuarine environments in Sydney, Australia, using specific assays for detection.
  • It found that decay rates varied between the two locations, with Bacteroides HF183 decaying faster than other markers and enteric viruses, especially when exposed to sunlight.
  • The study highlighted significant differences in decay rates between natural mesocosms and laboratory microcosms, suggesting that factors like sunlight and water clarity affect the persistence of these pathogens in the environment.
View Article and Find Full Text PDF

This study investigated the decay rates of wastewater-associated markers and enteric viruses in laboratory microcosms mimicking estuarine water environments in temperate Sydney, NSW, Australia using qPCR and RT-qPCR assays. The results demonstrated the reduction in concentrations of Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), human adenovirus (HAdV 40/41), and enterovirus (EV) over a span of 42 days under spring/summer temperatures, presence/absence of microbiota, and different light conditions. The study found that HF183, Lachno3, crAssphage, PMMoV, HAdV 40/41, and EV exhibited varying decay rates depending on the experimental conditions.

View Article and Find Full Text PDF

Four representative sites in the greater city of Sydney, Australia, were selected for a study of the wet-weather overflow of sanitary (separate to stormwater) sewerage systems. Water samples were collected by autosamplers from up to eight wet weather overflow events over 16 months and from companion receiving water sites. The objective was to identify the risks posed by sewage contaminants to aquatic biota in the receiving waters, to aid in prioritising management actions.

View Article and Find Full Text PDF

The current microbial source tracking (MST) study tracked the reduction of the culturable fecal indicator bacteria enterococci, four human fecal markers (Bacteroides HF183, Lachnospiraceae Lachno3, cross-assembly phage (CrAssphage) and pepper mild mottle virus (PMMoV)) along with four enteric viruses - human adenovirus 40/41 (HAdV 40/41), enterovirus (EV), human norovirus GI (HNoV GI) and GII (HNoV GII) post wet weather overflows (WWOs) at two estuarine water sites from two depths under separate six-day sampling campaigns over seven and 12 days in Sydney, NSW, Australia. Neither HNoV GI nor GII was detected, while 13.9 % (10/72) of estuarine water samples had detections of EV.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated how well certain marker genes indicate human wastewater and animal scat in urban areas of Sydney, focusing on their host sensitivity and specificity.
  • Seven human-associated marker genes showed high sensitivity, while only one horse-associated gene demonstrated similar sensitivity, indicating distinct markers can effectively identify human waste.
  • Higher concentrations of human wastewater markers were noted, particularly for CrAssphage and PMMoV, suggesting that incorporating both human and animal markers is essential for accurately tracing fecal pollution in water environments.
View Article and Find Full Text PDF

Quantitative microbial risk assessment (QMRA) of human health risks using human fecal marker genes (HFMGs) is an useful water quality management tool. To inform accurate QMRA analysis, generation of probability distribution functions for HFMGs, and reference pathogenic viruses can be improved by input of correlation and ratios based upon measurement of HFMGs and gene copies (GC) of pathogenic viruses in untreated wastewater. The concentrations of four HFMGs (Bacteroides HF183, Lachnospiraceae Lachno3, CrAssphage and pepper mild mottle virus (PMMoV)), and GC of three reference pathogenic viruses human adenovirus 40/41 (HAdV 40/41), human norovirus GI + GII HNoV GI + GII and enterovirus (EV) were measured in untreated wastewater samples collected over a period of 12 months from two wastewater treatment plants in Sydney, Australia using quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR).

View Article and Find Full Text PDF

The application of quantitative polymerase chain reaction (qPCR) based microbial source tracking (MST) marker genes are increasingly being used to identify contaminating sources and inform management decisions. In this study, we assessed interlaboratory agreement on duplicate environmental water samples collected from estuarine and freshwater locations, by comparing results of qPCR based testing for Bacteroides HF183, crAssphage CPQ_056, and pepper mild mottle virus (PMMoV). The overall agreements (co-detection and non-co-detection) between CSIRO Land and Water (CLW) laboratory and Sydney Water (SW) laboratory for the HF183, crAssphage CPQ_056 and PMMoV marker genes for duplicate water samples were 74, 75 and 74%, respectively.

View Article and Find Full Text PDF

This study aimed to determine the prevalence and abundance of sewage and animal fecal contamination of sediment at seven estuarine locations in Sydney, NSW, Australia. Sediment samples were tested for the occurrence of microbial targets including molecular marker genes of enterococci (ENT), Bacteroides HF183 (HF183), Methanobrevibacter smithii (nifH), human adenovirus (HAdV) and emerging sewage-associated marker genes crAssphage (CPQ_056) and Lachnospiraceae (Lachno3) and animal feces-associated marker genes, including avian feces-associated Helicobacter spp. (GFD), canine-feces associated Bacteroides (DogBact), cattle-feces associated (cowM2) and horse feces-associated Bacteroides (HoF597).

View Article and Find Full Text PDF

This study investigates the impact of wet weather overflows (WWOs) at three estuarine locations in Sydney, NSW, Australia. WWOs can occur when infiltration of stormwater leads to an excess volume of flow within the sewerage system, resulting in the release of diluted sewage into the environment. Sewage contamination poses a risk to human health due to the presence of pathogens.

View Article and Find Full Text PDF

This study investigated the magnitude of wet weather overflow (WWO)-driven sewage pollution in an urban lake (Lake Parramatta) located in Sydney, New South Wales, Australia. Water samples were collected during a dry weather period and after two storm events, and tested for a range of novel and established sewage- [Bacteroides HF183, crAssphage CPQ_056 and pepper mild mottle virus (PMMoV)] and animal feces-associated (Bacteroides BacCan-UCD, cowM2 and Helicobacter spp. associated GFD) microbial source tracking marker genes along with the enumeration of culturable fecal indicator bacteria (FIB), namely Escherichia coli (E.

View Article and Find Full Text PDF

The HF183 marker gene, derived from the 16S rRNA gene of Bacteroides dorei, has been widely used to identify sewage pollution in environmental waters. CrAssphages are recently discovered DNA bacteriophages that are highly abundant in untreated sewage and have shown promises for tracking sewage contamination in environmental waters. In this paper, we report the development of a duplex quantitative PCR (qPCR) assay for simultaneous quantification of HF183 and crAssphage CPQ_056 marker genes in untreated sewage and sewage impacted stormwater.

View Article and Find Full Text PDF

Considerable efforts have been made in recent years in developing novel marker genes for fecal pollution tracking in environmental waters. CrAssphage are recently discovered DNA bacteriophage that are highly abundant in human feces and untreated sewage. In this study, we evaluated the host-sensitivity and -specificity of the newly designed crAssphage qPCR assays (Stachler et al.

View Article and Find Full Text PDF