We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely, the run-and-tumble particles. Notwithstanding the nonequilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by transition-path sampling, can be circumvented by identifying reasonable backward dynamics with a well-defined path-probability density. Our method is then applied to characterize the structure and kinetics of rare transition pathways undergone by run-and-tumble particles having to cross a potential barrier in order to find a target.
View Article and Find Full Text PDFWe use Langevin dynamics simulations to study linked ring polymers in channel confinement. We address the in- and out-of-equilibrium behavior of the systems for varying degrees of confinement and increasing topological and geometrical complexity of the interlocking. The main findings are three.
View Article and Find Full Text PDFFinding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, the navigation mode, in response to the type and the duration of the current phase.
View Article and Find Full Text PDFWe solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations.
View Article and Find Full Text PDFArtificial cells can be engineered to display dynamics sharing remarkable features in common with the survival behavior of living organisms. In particular, such active systems can respond to stimuli provided by the environment and undertake specific displacements to remain out of equilibrium, e.g.
View Article and Find Full Text PDFWe provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations.
View Article and Find Full Text PDFInspired by how certain proteins "sense" knots and entanglements in DNA molecules, here, we ask if local geometric features that may be used as a readout of the underlying topology of generic polymers exist. We perform molecular simulations of knotted and linked semiflexible polymers and study four geometric measures to predict topological entanglements: local curvature, local density, local 1D writhe, and nonlocal 3D writhe. We discover that local curvature is a poor predictor of entanglements.
View Article and Find Full Text PDFWe study catenated ring polymers confined inside channels and slits with Langevin dynamics simulations and address how the contour position and size of the interlocked or physically linked region evolve with time. We show that the catenation constraints generate a drag, or topological friction, that couples the contour motion of the interlocked regions. Notably, the coupling strength decreases as the interlocking is made tighter, but also shorter, by confinement.
View Article and Find Full Text PDFWe investigate exploration patterns of a microswimmer, modeled as an active Brownian particle, searching for a target region located in a well of an energy landscape and separated from the initial position of the particle by high barriers. We find that the microswimmer can enhance its success rate in finding the target by tuning its activity and its persistence in response to features of the environment. The target-search patterns of active Brownian particles are counterintuitive and display characteristics robust to changes in the energy landscape.
View Article and Find Full Text PDFWe investigate the possibility of extending the notion of temperature in a stochastic model for the RNA or protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system.
View Article and Find Full Text PDFWe show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existence of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories.
View Article and Find Full Text PDFTarget search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this nonequilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchmarked for a paradigmatic two-dimensional potential with a high barrier.
View Article and Find Full Text PDFWe develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semiflexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings and the minimal knot contour length are the topological invariants playing a key role in the model.
View Article and Find Full Text PDFNumerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations.
View Article and Find Full Text PDFBiomolecular conformational transitions are usually modeled as barrier crossings in a free energy landscape. The transition paths connect two local free energy minima and transition path times (TPT) are the actual durations of the crossing events. The simplest model employed to analyze TPT and to fit empirical data is that of a stochastic particle crossing a parabolic barrier.
View Article and Find Full Text PDFBraids composed of two interwoven polymer chains exhibit a "buckling" transition whose origin has been explained through the onset of plectonemic structures. Here we study, by a combination of simulation and analytics, the dynamics of plectoneme formation and their statistics in steady state. The introduction of an order parameter-the plectonemic fraction-allows us to map out the phase boundary between the straight-braid phase and the plectonemic one.
View Article and Find Full Text PDFWe simulate and study the topological disentanglement occurring when torus knots reach the ends of a semiflexible open polymer (decay into simpler knots or unknotting). Through a rescaling procedure and the application of appropriate boundary conditions, we show that the full unknotting process can be understood in terms of point-like particles representing essential crossings, diffusing on the support [0, 1]. We address the bending and configurational free energy drives on the diffusion process, together with the scaling properties of the effective diffusion and friction coefficients.
View Article and Find Full Text PDFWe examine how channel confinement affects the equilibrium properties of topologically linked ring polymers and, by contrast, of equivalent unlinked rings, too. By performing extensive simulations of semiflexible rings of different chain length, , and channel diameter, , we discover three notable properties purely due to linking. First, upon entering the weak confinement regime, the length of the physically linked portion, The, becomes independent of chain length.
View Article and Find Full Text PDFBy combining analytical results and simulations of various coarse-grained models, we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross interaction term discussed in the recent DNA literature, induces minimal energy shapes with a periodic alternation of parts with high and low curvature resembling rounded polygons. We briefly discuss the possible experimental relevance of these findings.
View Article and Find Full Text PDFWe explore the quantitative nexus among economic growth of a country, diversity and specialization of its productions, and evolution in time of its basket of exports. To this purpose we set up a dynamic model and construct economic complexity measures based on panel data concerning up to 1238 exports of 223 countries for 21 years. Key statistical features pertaining to the distribution of resources in the different exports of each country reveal essential in both cases.
View Article and Find Full Text PDFEntropy (Basel)
September 2018
The dynamics of imports plus exports of 226 product classes by the G7 countries between 1962 and 2000 is described in terms of stochastic differential equations. The model allows interesting comparisons among the different economies related to the compositions of the national baskets. Synthetic solutions can also be used to estimate hidden and unexploited growth potentials.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2018
We derive an analytical expression for the transition path time (TPT) distribution for a one-dimensional particle crossing a parabolic barrier. The solution is expressed in terms of the eigenfunctions and eigenvalues of the associated Fokker-Planck equation. The particle exhibits anomalous dynamics generated by a power-law memory kernel, which includes memoryless Markovian dynamics as a limiting case.
View Article and Find Full Text PDFBy using Langevin dynamics simulations, we study how semiflexible rings that are topologically linked respond to mechanical stretching. We use both constant-force and constant-velocity pulling protocols and map out how the mechanical tension affects observables related to metric quantities such as the longitudinal extension or span, and topology-related ones such as the length of the linked portion. We find that the average extension of linked rings, once divided by that of a single equivalent ring, is nonmonotonic in the applied force.
View Article and Find Full Text PDFFluctuating filaments, from densely-packed biopolymers to defect lines in structured fluids, are prone to become interlaced and form intricate architectures. Understanding the ensuing mechanical and relaxation properties depends critically on being able to capture such entanglement in quantitative terms. So far, this has been an elusive challenge.
View Article and Find Full Text PDF