Publications by authors named "Michele C"

Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.

View Article and Find Full Text PDF

Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.

View Article and Find Full Text PDF

Arthroplasty of the hip has become one of the most successful surgical interventions and has seen significant advancements over the last century. With these developments, patient expectations have shifted from merely achieving pain-free daily mobility to anticipating a full recovery, including the ability to participate in sports. This shift has driven innovations in prosthetic materials and surgical techniques, such as the development of wear-resistant materials like highly cross-linked polyethylene and the adoption of minimally invasive procedures to enhance recovery.

View Article and Find Full Text PDF

Recent experiments have demonstrated the self-assembly and long-range ordering of concentrated aqueous solutions of DNA and RNA mononucleotides. These are found to form Watson-Crick pairs that stack into columns that become spatially organized into a columnar liquid-crystalline phase. In this work, we numerically investigate this phase behavior by adopting an extremely coarse-grained model in which nucleotides are represented as semi-disk-like polyhedra decorated with attractive (patchy) sites that mimic the stacking and pairing interactions.

View Article and Find Full Text PDF

Nanometer-sized clusters are often targeted due to their potential applications as nanoreactors or storage/delivery devices. One route to assemble and stabilize finite structures consists of imparting directional bonding patterns between the nanoparticles. When only a portion of the particle surface is able to form an inter-particle bond, finite-size aggregates such as micelles and vesicles may form.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology.

View Article and Find Full Text PDF

This paper proposes a novel method to estimate rainfall intensity by analyzing the sound of raindrops. An innovative device for collecting acoustic data was designed, capable of blocking ambient noise in rainy environments. The device was deployed in real rainfall conditions during both the monsoon season and non-monsoon season to record raindrop sounds.

View Article and Find Full Text PDF

Hydrogen hydrates are among the basic constituents of our solar system's outer planets, some of their moons, as well Neptune-like exo-planets. The details of their high-pressure phases and their thermodynamic conditions of formation and stability are fundamental information for establishing the presence of hydrogen hydrates in the interior of those celestial bodies, for example, against the presence of the pure components (water ice and molecular hydrogen). Here, we report a synthesis path and experimental observation, by X-ray diffraction and Raman spectroscopy measurements, of the most H[Formula: see text]-dense phase of hydrogen hydrate so far reported, namely the compound 3 (or C[Formula: see text]).

View Article and Find Full Text PDF

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations.

View Article and Find Full Text PDF

The rich and complex phase diagram typical of anisotropic biological or synthetic nanoparticles, has brought a great deal of interest over the equilibrium phase behaviour of non-spherical colloids. Amongst the class of anisotropic nanoparticles, hard spherocylindrical colloids have been, over the years, extensively studied because of their optical properties, for their rich phase diagrams, and their important industrial applications, as model particles for biological systems (viruses), or for example as potential drug carriers having the ability of surviving the attacks of the immune systems. As real anisotropic nanoparticles are often polydisperse in size and/or in shape, unveiling the effect of such a perturbation over their equilibrium phase diagram is of paramount importance.

View Article and Find Full Text PDF

Compound climate-related events are a complex combination of climate drivers and hazards leading to a significant impact on natural and anthropic systems. Owing to their complexity and critical consequences, interdisciplinary undertaking is required to improve risk analysis, management, and communication. Although prior research in cognitive sciences extensively investigated risk perception in case of a single hazard, the analysis of compound hazards perception is still an open issue.

View Article and Find Full Text PDF

Sedimentation has a prominent impact on the functionality and lifetime of reservoirs and is a growing concern for stakeholders. Various parameters influence sedimentation caused by soil erosion. Here we have examined fifty Italian reservoirs to determine sedimentation rates and storage capacity loss.

View Article and Find Full Text PDF

The development of satellite sensors and interferometry synthetic aperture radar (InSAR) technology has enabled the exploitation of their benefits for long-term structural health monitoring (SHM). However, some restrictions cause this process to provide a small number of images leading to the problem of small data for SAR-based SHM. Conversely, the major challenge of the long-term monitoring of civil structures pertains to variations in their inherent properties by environmental and/or operational variability.

View Article and Find Full Text PDF

Despite the several sources of inaccuracy, commercial microwave links (CML) have been recently exploited to estimate the average rainfall intensity along the radio path from signal attenuation. Validating these measurements against "ground truth" from conventional rainfall sensors, as rain gauges, is a challenging issue due to the different spatial sampling involved. Here, we assess the performance of a network of CML as opportunistic rainfall sensors in a challenging mountainous environment located in Northern Italy.

View Article and Find Full Text PDF

An anisotropic colloidal shape in combination with an externally tunable interaction potential results in a plethora of self-assembled structures with potential applications toward the fabrication of smart materials. Here we present our investigation on the influence of an external magnetic field on the self-assembly of hematite-silica core-shell prolate colloids for two aspect ratios ρ = 2.9 and 3.

View Article and Find Full Text PDF

Double-stranded DNA (dsDNA) fragments exhibit noncovalent attractive interactions between their tips. It is still unclear how DNA liquid crystal self-assembly is affected by such blunt-end attractions. It is demonstrated that stiff dsDNA fragments with moderate aspect ratio can specifically self-assemble in concentrated aqueous solutions into different types of smectic mesophases on the basis of selectively screening of blunt-end DNA stacking interactions.

View Article and Find Full Text PDF

The protection of groundwater resources from non-point-source pollutants, such as those coming from agricultural practices, is the focus of several European Directives, including the Water Framework Directive and the Pesticide Directive. Besides the environmental goals to be reached by the single EU member state, these directives clearly underline the role of experts in supporting planners and public authorities to fulfil these objectives. This work presents a new web-based, freely-available dynamical tool, named the pesticide fate tool, developed within the geospatial Decision Support system (DSS), LandSupport, for the assessment of groundwater vulnerability, specific for type of pollutant.

View Article and Find Full Text PDF

Floods are among the most common and impactful natural events. The hazard of a flood event depends on its peak (Q), volume (V) and duration (D), which are interconnected to each other. Here, we used a worldwide dataset of daily discharge, two statistics (Kendall's tau and Spearman's rho) and a conceptual hydrological rainfall-runoff model as model-dependent realism, to investigate the factors controlling and the origin of the dependence between each couple of flood characteristics, with the focus to rainfall-driven events.

View Article and Find Full Text PDF

Biological liquid crystals, originating from the self-assembly of biological filamentous colloids, such as cellulose and amyloid fibrils, show a complex lyotropic behaviour that is extremely difficult to predict and characterize. Here we analyse the liquid crystalline phases of amyloid fibrils, and sulfated and carboxylated cellulose nanocrystals and measure their Frank-Oseen elastic constants K1, K2 and K3 by four different approaches. The first two approaches are based on the benchmark of the predictions of: (i) a scaling form and (ii) a variational form of the Frank-Oseen energy functional with the experimental critical volumes at order-order liquid crystalline transitions of the tactoids.

View Article and Find Full Text PDF

Background And Aim Of The Work: Urinary tract infections (UTIs) and recurrent urinary tract infections (rUTIs) are widespread disease and almost half of all women will experience at least one episode of cystitis during their life. Aim of this study was to review the evidence of literature about the therapeutic and preventive effects of a product containing D-Mannose, ElliroseTM and Lactobacollus Plantarum on patients' symptoms, quality of life and recurrence of UTIs and to investigate the practicing urologists' knowledge about the clinical application of this product.

Materials: We administrated an investigational survey about clinical use of a phytotherapeutic product made of D-Mannose, ElliroseTM and Lactobacollus Plantarum to 12 residents in Urology at the University of Modena and Reggio Emilia and to 32 urologists working in the provinces of Modena, Reggio Emilia and Parma.

View Article and Find Full Text PDF

Liquid-crystalline phases in all-DNA systems have been extensively studied in the past and although nematic, cholesteric and columnar mesophases have been observed, the smectic phase remained elusive. Recently, it has been found evidence of a smectic-A ordering in an all-DNA system, where the constituent particles, which are gapped DNA duplexes, resemble chain-sticks. It has been argued that in the smectic-A phase these DNA chain-sticks should be folded as a means to suppress aggregate polydispersity and excluded volume.

View Article and Find Full Text PDF

Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals.

View Article and Find Full Text PDF

Amyloid fibrils offer the possibility of controlling their contour length, aspect ratio, and length distribution, without affecting other structural parameters. Here we show that a fine control in the contour length distribution of β-lactoglobulin amyloid fibrils, achieved by mechanical shear stresses of different levels, translates into the organization of tactoids of different shapes and morphologies. While longer fibrils lead to highly elongated nematic tactoids in an isotropic continuous matrix, only sufficiently shortened amyloid fibrils lead to cholesteric droplets.

View Article and Find Full Text PDF

Maximum annual daily precipitation is a fundamental hydrologic variable that does not attain asymptotic conditions. Thus the classical extreme value theory (i.e.

View Article and Find Full Text PDF