Fetal growth needs adequate blood perfusion from both sides of the placenta, on the maternal side through the uterine vessels and on the fetal side through the umbilical cord. In a model of intrauterine growth restriction (IUGR) induced by reduced blood volume expansion, uterine artery remodeling was blunted. The aim of this study is to determine if IUGR and fetus sex alter the functional and mechanical parameters of umbilical cord blood vessels.
View Article and Find Full Text PDFContext: Intrauterine growth restriction (IUGR) is an immediate outcome of an adverse womb environment, exposing newborns to developing cardiometabolic disorders later in life.
Objective: This study investigates the cardiac metabolic consequences and underlying mechanism of energy expenditure in developing fetuses under conditions of IUGR.
Methods: Using an animal model of IUGR characterized by uteroplacental vascular insufficiency, mitochondrial function, gene profiling, lipidomic analysis, and transcriptional assay were determined in fetal cardiac tissue and cardiomyocytes.
Uncovering the biological role of nuclear receptor peroxisome proliferator-activated receptors (PPARs) has greatly advanced our knowledge of the transcriptional control of glucose and energy metabolism. As such, pharmacological activation of PPARγ has emerged as an efficient approach for treating metabolic disorders with the current use of thiazolidinediones to improve insulin resistance in diabetic patients. The recent identification of growth hormone releasing peptides (GHRP) as potent inducers of PPARγ through activation of the scavenger receptor CD36 has defined a novel alternative to regulate essential aspects of lipid and energy metabolism.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2018
Insufficient development of the uteroplacental circulation may contribute to the development of intrauterine growth restriction (IUGR). We developed a rat model of IUGR by administering a low-Na diet. This diet reduces maternal blood volume expansion and uteroplacental perfusion.
View Article and Find Full Text PDFLower maternal plasma volume expansion was found in idiopathic intrauterine growth restriction (IUGR) but the link remains to be elucidated. An animal model of IUGR was developed by giving a low-sodium diet to rats over the last week of gestation. This treatment prevents full expansion of maternal circulating volume and the increase in uterine artery diameter, leading to reduced placental weight compared to normal gestation.
View Article and Find Full Text PDFC-Atrial natriuretic peptide (ANP)4-23, a ring deleted analog of ANP that specifically interacts with natriuretic peptide receptor-C (NPR-C), has been shown to decrease the enhanced expression of Giα proteins implicated in the pathogenesis of hypertension. In the present study, we investigated whether in vivo treatment of spontaneously hypertensive rats (SHRs) with C-ANP4-23 could attenuate the development of high blood pressure (BP) and explored the underlying mechanisms responsible for this response. Intraperitoneal injection of C-ANP4-23 at the concentration of 2 or 10 nmol/kg body weight to prehypertensive SHRs attenuated the development of high BP, and at 8 weeks it was decreased by ≈20 and 50 mm Hg, respectively; however, this treatment did not affect BP in Wistar-Kyoto rats.
View Article and Find Full Text PDFDuring development, the risk of developing mesial temporal lobe epilepsy (MTLE) increases when the developing brain is exposed to more than one insult in early life. Early life insults include abnormalities of cortical development, hypoxic-ischemic injury and prolonged febrile seizures. To study epileptogenesis, we have developed a two-hit model of MTLE characterized by two early-life insults: a freeze lesion-induced cortical malformation at post-natal day 1 (P1), and a prolonged hyperthermic seizure (HS) at P10.
View Article and Find Full Text PDFIn low sodium-induced intrauterine growth restricted (IUGR) rat, foetal adrenal steroidogenesis as well as the adult renin-angiotensin-aldosterone system (RAAS) is altered. The aim of the present study was to determine the expression of cytochrome P450 aldosterone synthase (P450aldo) and of angiotensin II receptor subtypes 1 (AT(1)R) and 2 (AT(2)R) in adult adrenal glands and whether this expression could be influenced by IUGR and by high-salt intake in a sex-specific manner. After 6 weeks of 0.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2010
By feeding a low-sodium diet to dams over the last third of gestation, we have developed an animal model of intrauterine growth restriction (IUGR). Given that fetal adrenal development and maturation occur during late gestation in rats, the aim of this study was to evaluate the expression of proteins and enzymes involved in steroidogenesis and catecholamine synthesis in adrenal glands from IUGR fetuses. A gene microarray was performed to investigate for alteration in the pathways participating in hormone production.
View Article and Find Full Text PDFMethods Mol Biol
September 2009
Fetal programming of adult disease is an area of research that has gained considerable attention. Epidemiological studies suggest that adverse intrauterine environment in fetal life is associated with a higher incidence of hypertension and coronary disease. Several mechanisms could contribute to these diseases and be regulated in a tissue-specific manner.
View Article and Find Full Text PDFDespite widespread accessibility to prenatal care, little is known on the mechanisms initiating early maternal adaptation to pregnancy. Moreover, preeclampsia and intrauterine growth retardation remain the most frequent and serious complications of pregnancy. Recent studies, both in humans and in laboratory animals, have shown that very early events in gestation may be important determinants for the continuation of healthy pregnancy.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2007
The uterine vasculature plays an important role during pregnancy by providing adequate perfusion of the maternal-fetal interface. To this end, substantial remodeling of the uterine vasculature occurs with consequent changes in responsiveness to contractile agents. The purpose of our study was to characterize the vasorelaxant effects of estrogens on vascular smooth muscles of the rat uterine artery during pregnancy and to evaluate the involvement of estrogen receptors (ESR) and nitric oxide synthases (NOS).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2007
Sodium supplementation given for 1 wk to nonpregnant rats induces changes that are adequate to maintain renal and circulatory homeostasis as well as arterial blood pressure. However, in pregnant rats, proteinuria, fetal growth restriction, and placental oxidative stress are observed. Moreover, the decrease in blood pressure and expansion of circulatory volume, normally associated with pregnancy, are prevented by high-sodium intake.
View Article and Find Full Text PDFLowering and increasing sodium intake in pregnant rats evoke opposite changes in renin-angiotensin-aldosterone system (RAAS) activity and are associated with alterations of blood volume expansion. As augmented uterine blood flow during gestation is linked to increased circulatory volume, we wanted to determine if low- and high-sodium intakes affect the mechanical properties and angiotensin II (AngII) responses of the uterine vasculature. Non-pregnant and pregnant rats received a normal sodium (0.
View Article and Find Full Text PDFEpidemiological studies link intra-uterine growth restriction (IUGR) with increased incidence of hypertension and cardiac disease in adulthood. Our rat model of IUGR supports this contention and provides evidence for the programming of susceptibility for hypertension in all offspring. Moreover, in the female offspring only, gross anatomical changes (cardiac ventricle to body ratios) and increased left cardiac ventricular atrial natriuretic peptide (ANP) mRNA levels provide evidence for programming of cardiac disease in this gender.
View Article and Find Full Text PDFWe previously reported that sodium restriction during pregnancy reduces plasma volume expansion and promotes intra-uterine growth restriction (IUGR) in rats while it activates the renin-angiotensin-aldosterone system (RAAS). In the present study, we proceeded to determine whether expression of the two angiotensin II (ANGII) receptor subtypes (AT(1) and AT(2)) change in relation to maternal water-electrolyte homeostasis and fetal growth. To this end, pregnant (gestation day 15) and non-pregnant Sprague-Dawley rats were randomly assigned to two groups fed either normal, or Na(+)-restricted diets for 7 days.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2004
Gestation is associated with decreased blood pressure and resistance to the effects of vasoconstrictor agents. A recent study showed that pregnant rats, on increased sodium intake, present physiological changes that resemble those observed in preeclampsia. We investigated the effects of sodium supplementation on reactivity and on potassium and Ca(2+) channel activity in blood vessels during gestation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2003
Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2002
Epidemiological studies have produced evidence that unfavorable intrauterine environments during fetal life may lead to adverse outcomes in adulthood. We have previously shown that a low-sodium diet, given to pregnant rats over the last week of gestation, results in intrauterine growth restriction (IUGR). We hypothesize that pups born with IUGR are more susceptible to the development of hypertension in adulthood.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2002
Pregnancy is associated with hemodynamic changes such as reduced vascular resistance and blood pressure. We reported that, during late pregnancy, the activity of voltage-dependent calcium channels (VDCC) is altered in the adrenal cortex and vascular smooth muscle. These observations suggested that the late pregnancy-induced decrease in blood pressure is linked to diminished VDCC function.
View Article and Find Full Text PDF