γ-Alumina, a widely used industrial catalyst support, undergoes irreversible transformation into various aluminum hydroxides under hydrothermal (HT) conditions, resulting in strong modification of its intrinsic properties. Most of the strategies that have been proposed to prevent or at least minimize its transformation into oxy-hydroxides consist in covering the alumina surface with a hydrophobic carbon layer, making it less sensitive to modifications induced by water. However, such methods necessitate high carbon contents, which significantly modifies structural and chemical properties of alumina.
View Article and Find Full Text PDFUnderstanding platinum (Pt) speciation on catalysts is crucial for the design of atom-efficient materials and optimized formulations. The adsorption of carbon monoxide (CO) as a probe molecule is widely used to reveal Pt dispersion and structures, yet the assignment of IR bands is not straightforward, hindering determination of the nature of the surface sites or ensemble involved. CO adsorption was studied here over a zirconia-supported Pt catalyst.
View Article and Find Full Text PDFSugarcane molasses distillery wastewater contains melanoidins, which are dark brown recalcitrant nitrogenous polymer compounds. Studies were carried out in batch mode to evaluate Pt and Ru supported catalysts in the Catalytic Wet Air Oxidation (CWAO) process of a synthetic melanoidins solution, prepared by stoichiometric reaction of glucose with glycine. The addition of a catalyst slightly improved TOC removal compared with the non-catalytic reaction, and especially promoted the conversion of ammonium produced from organically-bound nitrogen in melanoidins to molecular nitrogen and nitrate.
View Article and Find Full Text PDFPt catalysts prepared over different metallic oxide supports were investigated in the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) in alkaline aqueous solutions with air, to examine the combined effect of the support and base addition. The base (nature and amount) played a significant role in the degradation or oxidation of HMF. Increasing amounts of the weak NaHCO3 base improved significantly the overall catalytic activity of Pt/TiO2 and Pt/ZrO2 by accelerating the oxidation steps, especially for the aldehyde group.
View Article and Find Full Text PDFSupported noble-metal catalysts (Ru, Pd or Pt) and the corresponding Re-promoted catalysts exhibit a high activity for the hydrogenation of biobased carboxylic acids. Levulinic acid and succinic acid are converted into the lactones or the diols depending on the nature of the catalyst and the reaction conditions. The highest selectivity to 1,4-pentanediol of 82 % is achieved at 140 °C in the presence of the 1.
View Article and Find Full Text PDFCatalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.
View Article and Find Full Text PDFThe photocatalytic oxidation of diuron has been performed in presence of TiO(2) suspensions. To better understand the mechanistic details of the hydroxyl radical attack on diuron, computational methods were carried out. The combination of experimental and computational methods has been employed to establish the main degradation pathways of diuron.
View Article and Find Full Text PDFA series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.
View Article and Find Full Text PDFThe oxidation with air of cyclohexanone was conducted in the presence of synthetic carbons catalysts. The effect of carbon activation treatment (CO2 or air burnoff), phosphorus additive, platinum loading, and nature of the solvent (water or water/acetic acid mixture) were studied. Cyclohexanone oxidation at 140 degrees C yielded a mixture of C6, C5, and C4 dicarboxylic acids.
View Article and Find Full Text PDFTwo Kraft-pulp bleaching effluents from a sequence of treatments which include chlorine dioxide and caustic soda were treated by catalytic wet-air oxidation (CWAO) at T=463 K in trickle-bed and batch-recycle reactors packed with either TiO2 extrudates or Ru(3 wt%)/TiO2 catalyst. Chemical analyses (TOC removal, color, HPLC) and bioassays (48-h and 30-min acute toxicity tests using Daphnia magna and Vibrio fischeri, respectively) were used to get information about the toxicity impact of the starting effluents and of the treated solutions. Under the operating conditions, complex organic compounds are mostly oxidized into carbon dioxide and water, along with short-chain carboxylic acids.
View Article and Find Full Text PDF