G-quadruplex (G4) structures that can form at guanine-rich genomic sites, including telomeres and gene promoters, are actively involved in genome maintenance, replication, and transcription, through finely tuned interactions with protein networks. In the present study, we identified the intermediate filament protein Vimentin as a binder with nanomolar affinity for those G-rich sequences that give rise to at least two adjacent G4 units, named G4 repeats. This interaction is supported by the N-terminal domains of soluble Vimentin tetramers.
View Article and Find Full Text PDFSummary: Despite the improvement in variant detection algorithms, visual inspection of the read-level data remains an essential step for accurate identification of variants in genome analysis. We developed BamSnap, an efficient BAM file viewer utilizing a graphics library and BAM indexing. In contrast to existing viewers, BamSnap can generate high-quality snapshots rapidly, with customized tracks and layout.
View Article and Find Full Text PDFBackground: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes.
Motivation: G-quadruplexes (G4s) are non-canonical nucleic acid conformations that are widespread in all kingdoms of life and are emerging as important regulators both in RNA and DNA. Recently, two new higher-order architectures have been reported: adjacent interacting G4s and G4s with stable long loops forming stem-loop structures. As there are no specialized tools to identify these conformations, we developed QPARSE.
View Article and Find Full Text PDFG-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity.
View Article and Find Full Text PDFMotivation: Non-B DNA conformations play an important role in genomic rearrangements, structural three-dimensional organization and gene regulation. Many non-B DNA structures show symmetrical properties as palindromes and mirrors that can form hairpins, cruciform structures or triplexes. A comprehensive tool, capable to perform a fast genome wide search for exact and degenerate symmetrical patterns, is needed for further investigating nucleotide tracts potentially forming non-B DNA structures.
View Article and Find Full Text PDFThe advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.
View Article and Find Full Text PDF