Soluble epoxide hydrolase (sEH) is a phase-I xenobiotic metabolizing enzyme having both an N-terminal phosphatase activity and a C-terminal epoxide hydrolase activity. Endogenous hydrolase substrates include arachidonic acid epoxides, which have been involved in regulating blood pressure and inflammation. The subcellular localization of sEH has been controversial.
View Article and Find Full Text PDFParthenogenetic development (PA) is often used as a model to investigate activation protocols for nuclear transfer (NT) embryos. The objective of this study was to compare the development, as well as the dynamics of the nuclear materials and microtubules of PA and NT embryos following similar activation treatment. Our results demonstrate that, during parthenogenesis, activation through either electrical pulses or chemical stimulation alone resulted in low cleavage rates and compromised development.
View Article and Find Full Text PDFCloning by somatic cell nuclear transfer has been successfully achieved by both fusing of a donor cell with and injecting an isolated donor cell nucleus into an enucleated oocyte. However, each of the above methods involves extended manipulation of either the oocytes (fusion) or the donor cells (nucleus isolation). Additionally, cloning efficiency can be reduced by low fusion rate of the cell fusion method, and specialized micromanipulation equipment and exacting nucleus isolation techniques are required for the nucleus injection method.
View Article and Find Full Text PDFOocytes enucleated at the second metaphase stage (MII) are often used as recipient cytoplasts for nuclear transfer. The oocyte's nuclear material has been traditionally removed blindly by aspirating the first polar body (Pb1) along with a portion of the cytoplasm. However, the Pb1-guided enucleation method is unreliable because the position of the Pb1 is variable.
View Article and Find Full Text PDF