Research on advanced biopreservation - technologies that include, for example, partial freezing, supercooling, and vitrification with nanoparticle infusion and laser rewarming - is proceeding at a rapid pace, potentially affecting many areas of medicine and the life sciences, food, agriculture, and environmental conservation. Given the breadth and depth of its medical, scientific, and corresponding social impacts, advanced biopreservation is poised to emerge as a disruptive technology with real benefits, but also ethical challenges and risks. Early engagement with potentially affected groups can help navigate possible societal barriers to adoption of this new technology and help ensure that emerging capabilities align with the needs, desires, and expectations of a broad range of interested parties.
View Article and Find Full Text PDFAdvanced biopreservation technologies using subzero approaches such as supercooling, partial freezing, and vitrification with reanimating techniques including nanoparticle infusion and laser rewarming are rapidly emerging as technologies with potential to radically disrupt biomedicine, research, aquaculture, and conservation. These technologies could pause biological time and facilitate large-scale banking of biomedical products including organs, tissues, and cell therapies.
View Article and Find Full Text PDF