A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.
View Article and Find Full Text PDFHerpes simplex virus entry into cells requires a multipartite fusion apparatus made of glycoprotein D (gD), gB, and heterodimer gH/gL. gD serves as a receptor-binding glycoprotein and trigger of fusion; its ectodomain is organized in an N-terminal domain carrying the receptor-binding sites and a C-terminal domain carrying the profusion domain, required for fusion but not receptor binding. gB and gH/gL execute fusion.
View Article and Find Full Text PDFThe multipartite entry-fusion system of herpes simplex virus is made of a quartet of glycoproteins-gD, gB, gH.gL-and three alternative gD receptors, herpesvirus entry mediator (HVEM), nectin1 and modified sites on heparan sulphate. This multipartite system recapitulates the basic steps of virus-cell fusion, i.
View Article and Find Full Text PDF