Vaccines have the potential to transform the health of all individuals and to reduce the health inequality between rich and poor countries. However, to achieve these goals, it is no longer sufficient to prioritize vaccine development using cost-effectiveness as the sole indicator. During a symposium entitled "Mission Grand Convergence-The Role of Vaccines," held in Siena, Italy, in July 2015, key stakeholders agreed that the prioritization of vaccine development and deployment must use multicriteria decision-making based on the following core concepts: (i) mortality and severity of the disease, (ii) vaccine safety considerations, and (iii) economic evaluation that captures the full benefits of vaccination.
View Article and Find Full Text PDFThe involvement of pathogenic bacteria in obstructive sleep apnoea syndrome (OSAS) has yet to be elucidated. We investigated the possible role of group A streptococcus (GAS) in OSAS pathogenesis. In 40 tonsillectomized patients affected by OSAS and 80 healthy controls, significant (p < 0.
View Article and Find Full Text PDFThanks to the Global Alliance for Vaccines and Immunization (GAVI), the Vaccine Fund and the Bill & Melinda Gates Foundation, the global health community has made enormous progress in providing already existing vaccines to developing countries. However, there still exists a gap to develop vaccines for which there is no market in the Western world, owing to low economic incentives for the private sector to justify the investments necessary for vaccine development. In many cases, industry has the technologies, but lacks the impetus to direct resources to develop these vaccine products.
View Article and Find Full Text PDFStaphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains.
View Article and Find Full Text PDFGroup B Streptococcus (GBS) causes pneumonia, meningitis and sepsis in neonates. The current distribution pattern of GBS serotypes in developing countries such as India, China and Brazil is not clear. In order to appropriately plan for vaccination programs to address the burden of this disease in these countries, prospective population based studies are urgently needed.
View Article and Find Full Text PDFStreptococcus pneumoniae pili contribute to adherence and virulence. The regulation of pilus-1 expression is bistable, thus piliated strains contain a variable proportion of pilus-1-non-expressing bacteria. We investigated whether such proportion changes during colonization.
View Article and Find Full Text PDFAn increased incidence of Clostridium difficile infection (CDI) is associated with the emergence of epidemic strains characterized by high genetic diversity. Among the factors that may have a role in CDI is a family of 29 paralogues, the cell-wall proteins (CWPs), which compose the outer layer of the bacterial cell and are likely to be involved in colonization. Previous studies have shown that 12 of the 29 cwp genes are clustered in the same region, named after slpA (cwp1), the slpA locus, whereas the remaining 17 paralogues are distributed throughout the genome.
View Article and Find Full Text PDFMulti-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S.
View Article and Find Full Text PDFRrgB321, a fusion protein of the three Streptococcus pneumoniae pilus-1 backbone RrgB variants, is protective in vivo against pilus islet 1 (PI-1) positive pneumococci. In addition, antibodies to RrgB321 mediate a complement-dependent opsonophagocytosis of PI-1 positive strains at levels comparable to those obtained with antisera against glycoconjugate vaccines. In the pneumococcus, pilus-1 displays a biphasic expression pattern, with different proportions of two bacterial phenotypes, one expressing and one not expressing the pilus-1.
View Article and Find Full Text PDFFunctional studies of Streptococcus pneumoniae virulence factors are facilitated by the development of complementation/mutagenesis systems. These methods usually result in poor expression yields; therefore, biochemical and structural/functional characterizations are mostly performed with proteins expressed and purified from heterologous systems (e.g.
View Article and Find Full Text PDFStreptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S.
View Article and Find Full Text PDFNon-typable Streptococcus pneumoniae (NTPn) strains are typically isolated from nasopharyngeal carriage or from conjunctivitis. Since the isolation of NTPn from invasive disease is rare, we characterized the genetic basis of the non-typability of two isolates obtained in Italy from two cases of bacteraemic pneumonia. MLST revealed that both NTPn belonged to ST191, which, according to the MLST database, is associated with serotype 7F.
View Article and Find Full Text PDFThe Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA.
View Article and Find Full Text PDFStreptococci are clinically important Gram-positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to host tissues is the initial critical event in the pathogenesis of most infections.
View Article and Find Full Text PDFThirty percent of Streptococcus pneumoniae isolates contain pilus islet 1, coding for a pilus composed of the backbone subunit RrgB and two ancillary proteins, RrgA and RrgC. RrgA is the major determinant of in vitro adhesion associated with pilus 1, is protective in vivo in mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the "head" of the protein, which contains the putative binding domains, whereas the elongated "stalk" was mostly conserved.
View Article and Find Full Text PDFStreptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus.
View Article and Find Full Text PDFBackground: Inhabitants of slum settlements represent a significant proportion of the population at risk for pneumococcal disease in developing countries.
Methods: We conducted a household survey of pneumococcal carriage among residents of a slum community in the city of Salvador, Brazil.
Results: Among 262 subjects, 95 (36%) were colonized with Streptococcus pneumoniae.
Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA.
View Article and Find Full Text PDFPili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface.
View Article and Find Full Text PDFBackground: Pilus components of Streptococcus pneumoniae encoded by rlrA were recently shown to elicit protection in an animal model of infection. Limited data are available on the prevalence of the rlrA operon in pneumococci; therefore, we investigated its distribution and its antigenic variation among disease-causing strains.
Methods: The prevalence of rlrA and its association with serotype and genotype were evaluated in a global panel of 424 pneumococci isolates (including the 26 drug-resistant clones described by the Pneumococcal Molecular Epidemiology Network).
In this review we aim to provide the reader with an understanding of the capsular-based complexity of Streptococcus pneumoniae, one of the main limitations to current vaccine development. We then discuss the need for a new vaccine strategy based on proteic antigen candidates discovered in silico. Describing specifically how reverse vaccinology coupled to conventional vaccinology has led to a new paradigm of vaccine development.
View Article and Find Full Text PDFStreptococcus pneumoniae is a major public health threat worldwide. The recent discovery that this pathogen possesses pili led us to investigate their protective abilities in a mouse model of intraperitoneal infection. Both active and passive immunization with recombinant pilus subunits afforded protection against lethal challenge with the S.
View Article and Find Full Text PDFMost bacterial pathogens have long filamentous structures known as pili or fimbriae extending from their surface. These structures are often involved in the initial adhesion of the bacteria to host tissues during colonization. In gram-negative bacteria, pili are typically formed by non-covalent interactions between pilin subunits.
View Article and Find Full Text PDFMolecular machines orchestrate the translocation and entry of pathogens through host cell membranes, in addition to the uptake and release of molecules during endocytosis and exocytosis. Viral cell entry requires a family of glycoproteins, and the structural organization and function of these viral glycoproteins are similar to the SNARE proteins, which are known to be involved in intracellular vesicle fusion, endocytosis and exocytosis. Here, we propose that a family of bacterial membrane proteins that are responsible for cell-mediated adherence and entry resembles the structural architecture of both viral fusion proteins and eukaryotic SNAREs and might therefore share similar, but distinct, mechanisms of cell membrane translocation.
View Article and Find Full Text PDFProteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L.
View Article and Find Full Text PDF