Lewy bodies (LB) and Lewy neurites (LN), which are primarily composed of α-synuclein (α-syn), are neuropathological hallmarks of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We recently found that the neuronal phosphoprotein synapsin III (syn III) controls dopamine release via cooperation with α-syn and modulates α-syn aggregation. Here, we observed that LB and LN, in the substantia nigra of PD patients and hippocampus of one subject with DLB, displayed a marked immunopositivity for syn III.
View Article and Find Full Text PDFLoss-of-function mutations in the progranulin (PGRN) gene are a common cause of familial frontotemporal lobar degeneration (FTLD). This age-related neurodegenerative disorder, characterized by brain atrophy in the frontal and temporal lobes and such typical symptoms as cognitive and memory impairment, profound behavioral abnormalities, and personality changes is thought to be related to connectome dysfunctions. Recently, PGRN reduction has been found to induce a behavioral phenotype reminiscent of FTLD symptoms in mice by affecting neuron spine density and morphology, suggesting that the protein can influence neuronal structural plasticity.
View Article and Find Full Text PDFThe main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III.
View Article and Find Full Text PDFParkinson's disease (PD) is the most common neurodegenerative movement disorder. Its characteristic neuropathological features encompass the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies and Lewy neurites. These are intraneuronal and intraneuritic proteinaceous insoluble aggregates whose main constituent is the synaptic protein α-synuclein.
View Article and Find Full Text PDFAlpha-synuclein (α-syn) is the main protein component of Lewy bodies (LBs), that together with nigrostriatal dopamine neuron loss constitute typical pathological hallmarks of Parkinson's disease (PD). Glutamate N-methyl-d-aspartate receptor (NMDAR) abnormalities, peculiarly involving NR2B-containing NMDAR, have been observed in the brain of PD patients and in several experimental models of the disease. Recent findings, indicating that α-syn can modulate NMDAR trafficking and function, suggest that this protein may be a pivotal regulator of NMDAR activity.
View Article and Find Full Text PDFThe proximity ligation assay (PLA) is a sensitive and specific technique to visualize proteins, their posttranslational modifications and activation state as well as protein-protein interactions. The assay is based on the employment of proximity probes, composed by oligonucleotide-conjugated antibodies, to recognize a couple of specific targets. The binding of probes in close proximity allows for their hybridization by connector oligonucleotides, that can form a circular DNA strand.
View Article and Find Full Text PDFAlpha-synuclein is a natively unfolded protein playing a key role in the regulation of several neuronal synaptic functions in physiological and pathological conditions. Many studies, over the past years, have shown that it is actively involved in PD pathophysiology. Alpha-synuclein is integrated in a complex network of neuronal processes through the interaction with cytosolic and synaptic proteins.
View Article and Find Full Text PDFAlpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our "in vitro" studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by a progressive loss of dopamine (DA) neurons of the nigrostriatal system and by the presence of Lewy bodies (LB), proteinaceous inclusions mainly composed of filamentous α-synuclein aggregates. Alpha-synuclein is a natively unfolded protein which plays a central role in the control of dopaminergic neuronal functions and which is thought to be critically implicated in PD pathophysiology. Indeed, besides the fact that α-synuclein is the main protein component of LB, genetic studies showed that mutations and multiplications of the α-synuclein gene are responsible for the onset of familial forms of PD.
View Article and Find Full Text PDFAccumulation of misfolded proteins in the endoplasmic reticulum (ER) is the main event leading to the induction of the ER stress-related unfolded protein response (UPR). Recent postmortem evaluation, showing that the UPR pathway is activated in nigral dopaminergic neurons bearing α-synuclein inclusions in the brain of Parkinson's disease (PD) patients, suggests that the activation of the UPR may be induced by the accumulation of α-synuclein. In this study, we show that the misfolded protein-sensor/UPR activator glucose-regulated protein 78/immunoglobulin heavy chain-binding protein was bound to α-synuclein and was increased in 'in vitro' and 'in vivo' models showing aggregated α-synuclein accumulation.
View Article and Find Full Text PDF