Publications by authors named "Michela Viretto"

Circulating extracellular vesicles (EVs) may play a pathophysiological role in the onset of complications of subarachnoid hemorrhage (SAH), potentially contributing to the development of vasospasm (VP). In this study, we aimed to characterize circulating EVs in SAH patients and examine their effects on endothelial and smooth muscle cells (SMCs). In a total of 18 SAH patients, 10 with VP (VP), 8 without VP (NVP), and 5 healthy controls (HC), clinical variables were recorded at different time points.

View Article and Find Full Text PDF

A reduction of the nitric oxide (NO) action in vascular smooth muscle cells (VSMC) could play a role in the vascular damage induced by the glycaemic excursions occurring in diabetic patients; in this study, we aimed to clarify whether a short-term incubation of cultured VSMC with high glucose reduces the NO ability to increase cGMP and the cGMP ability to phosphorylate VASP at Ser-239. We observed that a 180 min incubation of rat VSMC with 25 mmol/L glucose does not impair the NO-induced cGMP increase but reduces VASP phosphorylation in response to both NO and cGMP with a mechanism blunted by antioxidants. We further demonstrated that high glucose increases radical oxygen species (ROS) production and that this phenomenon is prevented by the PKC inhibitor chelerythrine and the NADPH oxidase inhibitor apocynin.

View Article and Find Full Text PDF

Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF) action on vascular smooth muscle cells (VSMC). Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA) enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively) we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS).

View Article and Find Full Text PDF

Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel formation. An important factor in these phenomena is the Vascular Endothelial Growth Factor (VEGF), a molecule produced also by Vascular Smooth Muscle Cells (VSMC). We aimed at evaluating the role of high glucose on VEGF-A(164) synthesis and secretion in VSMC from lean insulin-sensitive and obese insulin-resistant Zucker rats (LZR and OZR).

View Article and Find Full Text PDF

Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine.

View Article and Find Full Text PDF

Objective: Vascular smooth muscle cells (VSMCs) from the animal model of insulin resistance obese Zucker rats (OZR) show impaired ability of nitric oxide (NO) to increase cGMP and of cGMP to activate its specific kinase PKG, these defects being attributable to oxidative stress. We aimed to investigate the intracellular signalling downstream PKG in human and rat VSMC, and to clarify whether it is modified by insulin resistance and oxidative stress.

Methods: In aortic VSMC from humans, lean Zucker rats (LZR) and OZR, we measured by Western blots the activation induced by NO and cGMP of signalling molecules of PI3-K and MAPK pathways, with or without PKG inhibition, hydrogen peroxide and antioxidants.

View Article and Find Full Text PDF

Introduction: Exposure of vascular smooth muscle cells (VSMC) to homocysteine, at concentrations associated with an increased risk of cardiovascular events, enhances synthesis and secretion of Matrix Metalloproteinase-2 (MMP-2), which is involved in atherosclerotic plaque instabilization. This effect was prevented by inhibitors of Mitogen Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3-K) pathways, allowing to hypothesize that homocysteine activates both these pathways, likely via a receptor-mediated mechanism. One possible receptor is N-methyl-D-aspartate receptor (NMDAr), which is expressed in VSMC and is involved in homocysteine effects in other cell types.

View Article and Find Full Text PDF

Objective: The bacteriostatic preservative sodium azide (NaN(3)) activates soluble guanylate cyclase (sGC) in vascular tissues, thus elevating cellular 3',5'-cyclic guanosine monophosphate (cGMP). Because the sGC/cGMP pathway is involved in the control of platelet aggregation, we investigated whether in human platelets NaN(3) influences the responses to agonists, cGMP levels and cGMP-regulated pathways.

Design And Method: Concentration- and time-dependent effects of NaN(3) (1-100 micromol/L; 5-60 min incubation) on ADP- and collagen-induced aggregation, NO synthase (NOS) activity, cGMP synthesis and vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239 were investigated in platelets from 21 healthy individuals.

View Article and Find Full Text PDF