Publications by authors named "Michela Salvadori"

Article Synopsis
  • The project aims to improve a previously studied MAPI compound for treating lung diseases by addressing its chemical stability and creating a balanced profile for bronchodilation and anti-inflammation in rats.
  • Researchers tweaked the compound's chemical structure using insights from a unique crystal structure to enhance its efficacy without toxicity.
  • The final identified compound was found to be chemically stable, potent, and safe for further development based on various tests in rats, indicating it could be effective in clinical settings.
View Article and Find Full Text PDF

In this paper, we report the discovery of dual M antagonist-PDE4 inhibitor (MAPI) compounds for the inhaled treatment of pulmonary diseases. The identification of dual compounds was enabled by the intuition that the fusion of a PDE4 scaffold derived from our series with a muscarinic scaffold through a common linking ring could generate compounds active versus both the transmembrane M receptor and the intracellular PDE4 enzyme. Two chemical series characterized by two different muscarinic scaffolds were investigated.

View Article and Find Full Text PDF

Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application.

View Article and Find Full Text PDF

An equation to estimate Hg concentrations of <4 μg/L in groundwaters of a polluted area in NE Italy was set out by using transplants of the aquatic moss Rhynchostegium riparioides as trace element bioaccumulators. The equation is derived from a previous mathematical model which was implemented under laboratory conditions. The work aimed at (1) checking the compliance of the uptake kinetics with the model, (2) improving/adapting the model for groundwater monitoring, (3) comparing the performances of two populations of moss collected from different sites, and (4) assessing the environmental impact of Hg contamination on a small river.

View Article and Find Full Text PDF