Iron-based superconductors are under study for their potential for high-field applications due to their excellent superconducting properties such as low structural anisotropy, large upper critical fields and low field dependence of the critical current density. Between them, Fe(Se,Te) is simple to be synthesized and can be fabricated as a coated conductor through laser ablation on simple metallic templates. In order to make all the steps simple and fast, we have applied the spark plasma sintering technique to synthesize bulk Fe(Se,Te) to obtain quite dense polycrystals in a very short time.
View Article and Find Full Text PDFDiscovery of iron-based superconductors paved the way to a competitor of high-temperature superconductors, easier to produce, better performing in high fields, and promising to be less expensive. Critical parameters are investigated by resistivity measurements as a function of temperature, field, and angle (). This work presents a deep analysis of - phase diagram of PLD-processed Fe(Se,Te) superconducting films, thus revealing material and pinning anisotropy at once.
View Article and Find Full Text PDF