Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices.
View Article and Find Full Text PDFNeuroactive estrogenic and androgenic steroids influence synaptic transmission, finely modulating synaptic plasticity in several brain regions including the hippocampus. While estrogens facilitate long-term potentiation (LTP), androgens are involved in the induction of long-term depression (LTD) and depotentiation (DP) of synaptic transmission. To examine sex neurosteroid-dependent LTP and LTD in single cells, patch-clamp recordings from hippocampal CA1 pyramidal neurons of male rats and selective antagonists for estrogen receptors (ERs) and androgen (AR) receptors were used.
View Article and Find Full Text PDFElectrophysiological recordings were used to investigate the role of the local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on synaptic long-term effects induced in the hippocampal CA1 region of male rat slices. Long-term depression (LTD) and long-term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency.
View Article and Find Full Text PDFEstrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase).
View Article and Find Full Text PDF17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs).
View Article and Find Full Text PDFEstrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups.
View Article and Find Full Text PDFThe effects of noradrenaline (NA) on inhibitory responses to gamma aminobutyric acid (GABA) in neurones of the deep cerebellar nuclei were studied in vivo in rats, using extracellular single-unit recordings and microiontophoretic drug application. NA application altered GABA-evoked responses in 95 % of the neurones tested, but the effects differed between nuclei. Application of NA depressed GABA responses in the medial (MN) and posterior interpositus (PIN) nuclei, but enhanced GABA responses in the anterior interpositus nucleus (AIN).
View Article and Find Full Text PDFThe firing rate of single cerebellar nuclear neurons was studied during microiontophoretic application of noradrenaline (NA), 5-hydroxytryptamine (5-HT) and their agonists in deeply anesthetized rats. NA application depressed the neuronal firing rate more in the medial nucleus (MN) than in the interpositus (IN) and in the lateral nucleus (LN). These responses were mimicked by alpha(2) and, to a lesser extent, beta receptor agonists.
View Article and Find Full Text PDF