Publications by authors named "Michela Castellani"

Domain rotation of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c(1) redox centers plays a key role in the mechanism of the cyt bc(1) complex. Electron transfer within the cyt bc(1) complex of Paracoccus denitrificans was studied using a ruthenium dimer to rapidly photo-oxidize cyt c(1) within 1 μs and initiate the reaction. In the absence of any added quinol or inhibitor of the bc(1) complex at pH 8.

View Article and Find Full Text PDF

The respiratory cytochrome bc(1) complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization.

View Article and Find Full Text PDF

The cytochrome bc(1) complex is a key component in several respiratory pathways. One of the characteristics of the eukaryotic complex is the presence of a small acidic subunit, which is thought to guide the interaction of the complex with its electron acceptor and facilitate electron transfer. Paracoccus denitrificans represents the only example of a prokaryotic organism in which a highly acidic domain is covalently fused to the cytochrome c(1) subunit.

View Article and Find Full Text PDF

We previously proposed that the dimeric cytochrome bc(1) complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc(1) monomers (Covian, R., Kleinschroth, T., Ludwig, B.

View Article and Find Full Text PDF