Background: The diagnosis of colorectal cancer (CRC) is routinely accomplished through histopathologic examination. Prognostic information and treatment decisions are mainly determined by TNM classification, first defined in 1968. In the last decade, patient-specific CRC genomic landscapes were shown to provide important prognostic and predictive information.
View Article and Find Full Text PDFBackground: Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAF and MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease progression. The mechanism of resistance to this drug combination is unknown.
View Article and Find Full Text PDFBlockade of the epidermal growth factor receptor (EGFR) with the monoclonal antibodies cetuximab or panitumumab is effective in a subset of colorectal cancers (CRCs), but the emergence of resistance limits the efficacy of these therapeutic agents. At relapse, the majority of patients develop RAS mutations, while a subset acquires EGFR extracellular domain (ECD) mutations. Here we find that patients who experience greater and longer responses to EGFR blockade preferentially develop EGFR ECD mutations, while RAS mutations emerge more frequently in patients with smaller tumour shrinkage and shorter progression-free survival.
View Article and Find Full Text PDFAlthough recent clinical trials of BRAF inhibitor combinations have demonstrated improved efficacy in BRAF-mutant colorectal cancer, emergence of acquired resistance limits clinical benefit. Here, we undertook a comprehensive effort to define mechanisms underlying drug resistance with the goal of guiding development of therapeutic strategies to overcome this limitation. We generated a broad panel of BRAF-mutant resistant cell line models across seven different clinically relevant drug combinations.
View Article and Find Full Text PDFUnlabelled: How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiologic imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patient's progressing liver metastasis following prolonged response to cetuximab revealed a MEK1(K57T) mutation as a novel mechanism of acquired resistance.
View Article and Find Full Text PDFColorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity.
View Article and Find Full Text PDFThe development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium.
View Article and Find Full Text PDFColorectal cancers (CRCs) that are sensitive to the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation, which persisted after EGFR blockade.
View Article and Find Full Text PDFA main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug.
View Article and Find Full Text PDFUnlabelled: Only a fraction of patients with metastatic colorectal cancer receive clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) antibodies, which calls for the identification of novel biomarkers for better personalized medicine. We produced large xenograft cohorts from 85 patient-derived, genetically characterized metastatic colorectal cancer samples ("xenopatients") to discover novel determinants of therapeutic response and new oncoprotein targets. Serially passaged tumors retained the morphologic and genomic features of their original counterparts.
View Article and Find Full Text PDFPurpose: Gene mutations along the Ras pathway (KRAS, NRAS, BRAF, PIK3CA) occur in approximately 50% of colorectal cancers (CRC) and correlate with poor response to anti-EGF receptor (EGFR) therapies. We assessed the effects of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) and phosphoinositide 3-kinase (PI3K)/mTOR inhibitors, which neutralize the major Ras effectors, in patient-derived xenografts from RAS/RAF/PIK3CA-mutant metastatic CRCs (mCRC).
Experimental Design: Forty mCRC specimens harboring KRAS, NRAS, BRAF, and/or PIK3CA mutations were implanted in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice.
Purpose: KRAS mutations represent the main cause of resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) in metastatic colorectal cancer (mCRC). We evaluated whether highly sensitive methods for KRAS investigation improve the accuracy of predictions of anti-EGFR MoAbs efficacy.
Experimental Design: We retrospectively evaluated objective tumor responses in mCRC patients treated with cetuximab or panitumumab.