Publications by authors named "Michel Volland"

The synthesis of structurally diverse heterocycles for chemical space exploration was achieved via the cascade reactions of indigo with propargylic electrophiles. New pyrazinodiindolodione, naphthyridinedione, azepinodiindolone, oxazinoindolone and pyrrolodione products were prepared in one pot reactions by varying the leaving group (-Cl, -Br, -OMs, -OTs) or propargyl terminal functionality (-H, -Me, -Ph, -Ar). Mechanistic and density functional theory studies revealed that the unsaturated propargyl moiety can behave as an electrophile when aromatic terminal substitutions are made, and therefore competes with leaving group substitution for new outcomes.

View Article and Find Full Text PDF

A series of molecular precursors, containing one ( and ) or three ( and ) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable their π-π stacking onto low-dimensional nanocarbons including single-walled carbon nanotubes (SWCNTs) and nanographene (NG), their individualization, and their characterization. Microscopic (TEM, AFM) and spectroscopic (steady-state UV-vis and fluorescence, spectroelectrochemistry, and transient absorption measurements) techniques were at the forefront of the characterizations and were complemented by Raman spectroscopy and theoretical calculations.

View Article and Find Full Text PDF

A phosphodiester-linked dialkynyl substituted anthanthrene trimer (1) has been designed and synthesized. Its graphene ribbon like structure is expected to facilitate interactions with nanographene (NG) and single wall carbon nanotubes (SWCNT) to yield novel and stable carbon-based nanomaterials. Interactions with trimer 1 lead to exfoliation of NG and to the individualization of SWCNTs.

View Article and Find Full Text PDF

Herein, a novel electron donor-acceptor hybrid consisting of a NIR absorbing azulenocyanine as an electron donor and few-layer graphene as an electron acceptor was prepared. The extended aromatic core of azulenocyanine (1) assists in the exfoliation of graphite and allows the formation of a very high-quality few-layer graphene azulenocyanine hybrid system (2). The formation of a stable azulenocyanine/graphene hybrid was verified by means of an arsenal of spectroscopic and microscopic techniques.

View Article and Find Full Text PDF

A combination of a preexfoliated nanographene (NG) dispersion and fused electron donor-acceptor tetrathiafulvalene-perylenediimide (TTF-PDI) results in a noncovalent functionalization of NG. Such novel types of nanohybrids were characterized by complementary spectroscopic and microscopic techniques. The design strategy of the chromophoric and electroactive molecular conjugate renders a large and planar π-extended system with a distinct localization of electron-rich and electron-poor parts at either end of the molecular conjugate.

View Article and Find Full Text PDF

[(BDI)Mg ][B(C F ) ] (1; BDI=CH[C(CH )NDipp] ; Dipp=2,6-diisopropylphenyl) was prepared by reaction of (BDI)MgnPr with [Ph C ][B(C F ) ]. Addition of 3-hexyne gave [(BDI)Mg ⋅(EtC≡CEt)][B(C F ) ]. Single-crystal X-ray analysis, NMR investigations, Raman spectra, and DFT calculations indicate a significant Mg-alkyne interaction.

View Article and Find Full Text PDF

Two zinc phthalocyanines (ZnPcs) have been equipped with Newkome-type dendritic branches of increasing size and number of terminal carboxylate functional groups. The negatively charged carboxylates render these polyelectrolytes soluble in polar media such as methanol or buffered water. Sonication of the ZnPcs with graphene allowed for pronounced non-covalent binding of the ZnPc moieties on the graphene surface.

View Article and Find Full Text PDF

Different water-soluble perylenediimides (PDIs) have been used to individualize and stabilize single-walled carbon nanotubes (SWCNTs) in aqueous media. A key feature of the PDIs is that they can be substituted at the bay positions via the addition of two and/or four bromines. This enables control over structural and electronic PDI characteristics, which prompted us to conduct comparative assays with focus on SWCNTs' chirality and charge transfer.

View Article and Find Full Text PDF

Graphene-based materials (GBMs), with graphene, their most known member, at the head, constitute a large family of materials which has aroused the interest of scientists working in different research fields such as chemistry, physics, or materials science, to mention a few, arguably as no other material before. In this review, we offer a general overview on the most relevant synthetic approaches for the covalent and non-covalent functionalization and characterization of GBMs. Moreover, some representative examples of the incorporation into GBMs of electroactive units such as porphyrins, phthalocyanines, or ferrocene, among others, affording electron donor-acceptor (D-A) hybrids are presented.

View Article and Find Full Text PDF