Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge.
View Article and Find Full Text PDFThin films of the solid solution Nd1-xLaxNiOare grown in order to study the expected 0 K phase transitions at a specific composition. We experimentally map out the structural, electronic and magnetic properties as a function ofand a discontinuous, possibly first order, insulator-metal transition is observed at low temperature when= 0.2.
View Article and Find Full Text PDFWe report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors.
View Article and Find Full Text PDFNon-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows for the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions among others. We report here on the behavior of chiral DWs at ultrashort timescale after optical pumping in perpendicularly magnetized asymmetric multilayers.
View Article and Find Full Text PDFThe electrical control of the conducting state through phase transition and/or resistivity switching in heterostructures of strongly correlated oxides is at the core of the large on-going research activity of fundamental and applied interest. In an electromechanical device made of a ferromagnetic-piezoelectric heterostructure, we observe an anomalous negative electroresistance of ∼-282% and a significant tuning of the metal-to-insulator transition temperature when an electric field is applied across the piezoelectric. Supported by finite-element simulations, we identify the electric field applied along the conducting bridge of the device as the plausible origin: stretching the underlying piezoelectric substrate gives rise to a lattice distortion of the ferromagnetic manganite overlayer through epitaxial strain.
View Article and Find Full Text PDFNanostructured materials often have properties widely different from bulk, imposed by quantum limits to a physical property of the material. This includes, for example, superparamagnetism and quantized conductance, but original properties such as magnetoresistance in nonmagnetic molecular structures may also emerge. In this Letter, we report on the atomic manipulation of platinum nanocontacts in order to induce magnetoresistance.
View Article and Find Full Text PDFDirect chemical and structural characterization of transient iron-nickel alloy nanowires was performed at subnanometer spatial resolution using probe spherical aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. Nanowires with diameter less than 2 nm retaining their nominal bulk alloy composition were observed. In some cases, the nanowires were oxidized.
View Article and Find Full Text PDFThe reported observation of two anomalies in the intensity of the magnon Raman peaks of BiFeO₃ at 140 and 200 K (Singh et al 2008 J. Phys.: Condens.
View Article and Find Full Text PDF