The use of photonic concepts to achieve nanoactuation based on light triggering requires complex architectures to obtain the desired effect. In this context, the recent discovery of reversible optical control of the domain configuration in ferroelectrics offers a light-ferroic interplay that can be easily controlled. To date, however, the optical control of ferroelectric domains has been explored in single crystals, although polycrystals are technologically more desirable because they can be manufactured in a scalable and reproducible fashion.
View Article and Find Full Text PDFUnderstanding the physics behind changes in dielectric permittivity and mechanical response with temperature and frequency in lead-free ferroic materials is a fundamental key to achieve optimal properties and to guarantee good performance in the technological applications envisaged. In this work, dense [Formula: see text] (BNT) electroceramics were prepared through solid-state reaction of high-grade oxide reagents, followed by sintering at high temperature (1393 K for 3 h). In good agreement with previous reports in the literature, the thermal behaviour of dielectric response from these BNT materials showed the occurrence of a high-temperature diffuse-like permittivity peak, whose origin has been so far controversial.
View Article and Find Full Text PDFLi- and Ta-modified K 0.5 Na 0.5 NbO 3 compounds are among the most promising lead-free ferroelectrics for high-sensitivity piezoelectric ceramic materials, and are potentially capable of replacing Pb(Zr,Ti)O 3 .
View Article and Find Full Text PDF