Publications by authors named "Michel Surkyn"

Avoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy.

View Article and Find Full Text PDF

We recently disclosed a set of heteroaryl-fused piperazine inhibitors of BACE1 that combined nanomolar potency with good intrinsic permeability and low Pgp-mediated efflux. Herein we describe further work on two prototypes of this family of inhibitors aimed at modulating their basicity and reducing binding to the human ether-a-go-go-related gene (hERG) channel. This effort has led to the identification of compound , a highly potent (hAβ42 cell IC = 1.

View Article and Find Full Text PDF

MCL-1 is an attractive target for cancer therapy. We recently discovered highly potent and selective MCL-1 inhibitors containing a fluoroalkene fragment for which an efficient route to the main chiral -fluoro-BPin fragment was needed. The key step of this synthesis is a highly stereoselective defluoroborylation of a -difluorovinyl intermediate.

View Article and Find Full Text PDF

The discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pK and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system.

View Article and Find Full Text PDF

Despite several years of research, only a handful of β-secretase (BACE) 1 inhibitors have entered clinical trials as potential therapeutics against Alzheimer's disease. The intrinsic basic nature of low molecular weight, amidine-containing BACE 1 inhibitors makes them far from optimal as central nervous system drugs. Herein we present a set of novel heteroaryl-fused piperazine amidine inhibitors designed to lower the basicity of the key, enzyme binding, amidine functionality.

View Article and Find Full Text PDF

The discovery, design and synthesis of a new series of GSMs is described. The classical imidazole heterocycle has been replaced by a cyano group attached to an indole nucleus. The exploration of this series has led to compound 26-S which combined high in vitro and in vivo potency with an acceptable drug-like profile.

View Article and Find Full Text PDF

In previous studies, the introduction of electron withdrawing groups to 1,4-oxazine BACE1 inhibitors reduced the p K of the amidine group, resulting in compound 2 that showed excellent in vivo efficacy, lowering Aβ levels in brain and CSF. However, a suboptimal cardiovascular safety margin, based on QTc prolongation, prevented further progression. Further optimization resulted in the replacement of the 2-fluoro substituent by a CF-group, which reduced hERG inhibition.

View Article and Find Full Text PDF

1,4-Oxazines are presented, which show good in vitro inhibition in enzymatic and cellular BACE1 assays. We describe lead optimization focused on reducing the amidine pKa while optimizing interactions in the BACE1 active site. Our strategy permitted modulation of properties such as permeation and especially P-glycoprotein efflux.

View Article and Find Full Text PDF

The design and synthesis of a novel series of potent gamma secretase modulators is described. Exploration of various spacer groups between the triazole ring and the aromatic appendix in 2 has led to anilinotriazole 28, which combined high in vitro and in vivo potency with an acceptable drug-like profile.

View Article and Find Full Text PDF

The evolution of amide 3 into conformationally restricted bicyclic triazolo-piperidine 14-S as a γ-secretase modulator is described. This is a potential disease modifying anti-Alzheimer's drug which demonstrated high in vitro and in vivo potency against Aβ42 peptide, reduced lipophilicity and enhanced brain free fraction compared to the previous series.

View Article and Find Full Text PDF

The design and the synthesis of several chemical subclasses of imidazole containing γ-secretase modulators (GSMs) is described. Conformational restriction of pyridone 4 into bicyclic pyridone isosteres has led to compounds with high in vitro and in vivo potency. This has resulted in the identification of benzimidazole 44a as a GSM with low nanomolar potency in vitro.

View Article and Find Full Text PDF

In a previous communication, the SAR of a series of potent and selective 5-sulfonyl-benzimidazole CB2-receptor agonists was described. The lack of in vivo activity of compounds from this series was attributed to their poor solubility and metabolic stability. In this Letter, we report on the further optimization of this series, leading to the relatively polar and peripherically acting CB2 agonists 41 and 49.

View Article and Find Full Text PDF

A novel series of benzimidazole CB2-receptor agonists was synthesized and the structure-activity relationship explored. The results showed agonistic activities with an EC(50) up to 0.5 nM and excellent selectivity (>4000-fold) over the CB1 receptor.

View Article and Find Full Text PDF