Purpose: The accuracy of the system model that governs the transformation from the image space to the projection space in positron emission tomography (PET) greatly affects the quality of reconstructed images. For efficient computation in iterative reconstructions, the system model in PET can be factored into a product of geometric projection and sinogram blurring function. To further speed up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be reconstructed using 2D iterative algorithms.
View Article and Find Full Text PDFThe accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source.
View Article and Find Full Text PDF