Publications by authors named "Michel Riviere"

The Protein-O-mannosyltransferase is crucial for the virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This enzyme, called MtPMT (Rv1002c), is responsible for the post-translational O-mannosylation of mycobacterial proteins. It catalyzes the transfer of a single mannose residue from a polyprenol phospho-mannosyl lipidic donor to the hydroxyl groups of selected Ser/Thr residues in acceptor proteins during their translocation across the membrane.

View Article and Find Full Text PDF

To date, (Mtb) remains the world's greatest infectious killer. The rise of multidrug-resistant strains stresses the need to identify new therapeutic targets to fight the epidemic. We previously demonstrated that bacterial protein-mannosylation is crucial for Mtb infectiousness, renewing the interest of the bacterial-secreted mannoproteins as potential drug-targetable virulence factors.

View Article and Find Full Text PDF

Dectin-2 is a C-type lectin involved in the recognition of several pathogens such as Aspergillus fumigatus, Candida albicans, Schistosoma mansonii, and Mycobacterium tuberculosis that triggers Th17 immune responses. Identifying pathogen ligands and understanding the molecular basis of their recognition is one of the current challenges. Purified M.

View Article and Find Full Text PDF

Protein O-mannosylation is crucial for the biology of Mycobacterium tuberculosis but the key mannosylated protein(s) involved and its(their) underlying function(s) remain unknown. Here, we demonstrated that the M. tuberculosis mutant (Δpmt) deficient for protein O-mannosylation exhibits enhanced release of lipoarabinomannan (LAM) in a complex with LprG, a lipoprotein required for LAM translocation to the cell surface.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are essential processes conditioning the biophysical properties and biological activities of the vast majority of mature proteins. However, occurrence of several distinct PTMs on a same protein dramatically increases its molecular diversity. The comprehensive understanding of the functionalities resulting from any particular PTM association requires a highly challenging full structural description of the PTM combinations.

View Article and Find Full Text PDF

House dust mite, Dermatophagoides pteronyssinus (Der p), is one of the major allergens responsible for allergic asthma. However, the putative receptors involved in the signalization of Der p to the innate immune cells are still poorly defined as well as the impact of their activation on the outcome of the allergen-induced cell response. We previously reported that the HDM activation of mouse alveolar macrophages (AM) involves the TLR4/CD14 cell surface receptor complex.

View Article and Find Full Text PDF

A posttranslational protein O-mannosylation process resembling that found in fungi and animals has been reported in the major human pathogen Mycobacterium tuberculosis (Mtb) and related actinobacteria. However, the role and incidence of this process, which is essential in eukaryotes, have never been explored in Mtb. We thus analyzed the impact of interrupting O-mannosylation in the nonpathogenic saprophyte Mycobacterium smegmatis and in the human pathogen Mtb by inactivating the respective putative protein mannosyl transferase genes Msmeg_5447 and Rv1002c.

View Article and Find Full Text PDF

Background: Mycobacteria produce two unique families of cytoplasmic polymethylated polysaccharides -- the methylglucose lipopolysaccharides (MGLPs) and the methylmannose polysaccharides (MMPs) -- the physiological functions of which are still poorly defined. Towards defining the roles of these polysaccharides in mycobacterial physiology, we generated knock-out mutations of genes in their putative biosynthetic pathways.

Methodology/principal Findings: We report here on the characterization of the Rv1208 protein of Mycobacterium tuberculosis and its ortholog in Mycobacterium smegmatis (MSMEG_5084) as the enzymes responsible for the transfer of the first glucose residue of MGLPs.

View Article and Find Full Text PDF

Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M.

View Article and Find Full Text PDF

Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity.

View Article and Find Full Text PDF

The complex mycobacterial mannosylated lipoarabinomannans (ManLAMs) are currently considered to be the major virulence factors of the pathogenic Mycobacterium tuberculosis. The recognition and the interaction of ManLAMs with immune system receptors have been shown to promote M.tuberculosis phagocytosis but also to down-regulate the bactericidal immune response of the host in favor of the survival of the pathogenic bacilli.

View Article and Find Full Text PDF

The human pulmonary surfactant protein A (hSP-A), a member of the mammalian collectin family, is thought to play a key defensive role against airborne invading pulmonary pathogens, among which is Mycobacterium tuberculosis, the aetiologic agent of tuberculosis. hSP-A has been shown to promote the uptake and the phagocytosis of pathogenic bacilli through the recognition and the binding of carbohydrate motifs on the invading pathogen surface. Recently we identified lipomannan and mannosylated lipoarabinomannan (ManLAM), two major mycobacterial cell-wall lipoglycans, as potential ligands for binding of hSP-A.

View Article and Find Full Text PDF