Introduction: Cancer chemotherapy faces two major challenges - high toxicity of active substances and tumor resistance to drugs. Low toxic nanocarriers in combination with anticancer agents can significantly increase the effectiveness of therapy. Modern advances in nanotechnology make it easy to create materials with the necessary physical and chemical properties.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
Embedding nanoparticles (NPs) with organic shells is a way to control their aggregation behavior. Using polymers allows reaching relatively high shell thicknesses but suffers from the difficulty of obtaining regular hybrid objects at gram scale. Here, we describe a three-step synthesis in which multi-gram NP batches are first obtained by thermal decomposition, prior to their covalent grafting by an atom transfer radical polymerization (ATRP) initiator and to the controlled growing of the polymer shell.
View Article and Find Full Text PDFEur Phys J E Soft Matter
December 2019
Dilute solutions of asymmetric polystyrene/poly(methyl methacrylate) (PS/PMMA) mixtures in toluene and tetrahydrofuran (THF) are investigated by static and dynamic light scattering (SLS and DLS). Both solvents are good solvents for each of the two polymers. In toluene, the PMMA refractive index increment is close to zero and SLS provides a direct measurement of the PS static scattering functions.
View Article and Find Full Text PDFThe condensation of aldehydes and amines in water to give amphiphilic imines can lead to a particular autocatalytic behavior known as autopoiesis, in which the closed micellar structure made by the amphiphile at the mesoscale can accelerate the condensation of its constituents. Herein, through a combination of analytical tools, including diffusion ordered spectroscopy (DOSY) as well as light, neutron, and X-ray scattering techniques, the thermodynamic and kinetic parameters were probed at both the level of dynamic covalent imine bond formation and the level of the resulting micellar self-assemblies. It was found that the autopoietic behavior was the result of a combination of several parameters, including solubilization of hydrophobic building blocks, template effect at the core-shell interface, and growth/division cycles of the micellar objects.
View Article and Find Full Text PDFFluorescent nanoparticles (NPs) help to increase spatial and temporal resolution in bioimaging. Advanced microscopy techniques require very bright NPs that exhibit either stable emission for single-particle tracking or complete on/off switching (blinking) for super-resolution imaging. Here, ultrabright dye-loaded polymer NPs with controlled switching properties are developed.
View Article and Find Full Text PDFIn this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution.
View Article and Find Full Text PDFThe implementation of artificial molecular machines in polymer science is an important objective that challenges chemists and physicists in order to access an entirely new class of smart materials. To design such systems, the amplification of a mechanical actuation from the nanoscale up to a macroscopic response in the bulk material is a central issue. In this article we show that bistable [c2]daisy chain rotaxanes (i.
View Article and Find Full Text PDFScattering functions of sodium sulfonated polystyrene (NaPSS) star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS) technique. Whatever the concentration , they display two maxima. The first, of abscissa ₁*, is related to a position order between star cores and scales as ₁* ∝ .
View Article and Find Full Text PDFMaking molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported.
View Article and Find Full Text PDFOctafunctionalized spherosilsesquioxanes (Q8M8(H)), decorated with Si-H functions, could be used to design, by coupling via hydrosilylation with α-methoxy-ω-undecenyl poly(ethylene oxide)s (PEOs), organic-inorganic nanocomposite structures. (1)H, (13)C, and (29)Si NMR; size exclusion chromatography; and Fourier transfrom infrared spectroscopy were used to follow the grafting reaction and determine the molar mass and the functionality of the different species. Hybrid star-shaped poly(ethylene oxide)s of precise molar mass and functionality could be isolated by fractional precipitation of the raw reaction product.
View Article and Find Full Text PDFBy using a combination of experimental and theoretical tools, we elucidate unique physical characteristics of supramolecular triarylamine nanowires (STANWs), their packed structure, as well as the entire kinetics of the associated radical-controlled supramolecular polymerization process. AFM, small-angle X-ray scattering, and all-atomic computer modeling reveal the two-columnar "snowflake" internal structure of the fibers involving the π-stacking of triarylamines with alternating handedness. The polymerization process and the kinetics of triarylammonium radicals formation and decay are studied by UV-vis spectroscopy, nuclear magnetic resonance and electronic paramagnetic resonance.
View Article and Find Full Text PDFOrganic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice.
View Article and Find Full Text PDFSilver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry.
View Article and Find Full Text PDFWe have used atomic force microscopy to study the morphology of hydrophobic polyelectrolytes adsorbed on surfaces. The polyelectrolytes consisted of polystyrene sulfonate (PSS) chains made with three charge densities: 32%, 67%, and 92%. They were adsorbed on two types of surfaces: mica, and phospholipid bilayers made of mixed neutral and cationic lipids.
View Article and Find Full Text PDF