Publications by authors named "Michel Quintard"

The assessment of chemotherapy response in osteosarcoma (OS) based on the average percentage of viable cells is limited, as it overlooks the spatial heterogeneity of tumor cell response (foci of resistant cells), immune microenvironment, and bone microarchitecture. Despite the resulting positive classification for response to chemotherapy, some patients experience early metastatic recurrence, demonstrating that our conventional tools for evaluating treatment response are insufficient. We studied the interactions between tumor cells, immune cells (lymphocytes, histiocytes, and osteoclasts), and bone extracellular matrix (ECM) in 18 surgical resection samples of OS using multiplex and conventional immunohistochemistry (IHC: CD8, CD163, CD68, and SATB2), combined with multiscale characterization approaches in territories of good and poor response (GRT/PRT) to treatment.

View Article and Find Full Text PDF

Recent progresses in intravital imaging have enabled highly-resolved measurements of periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are increasingly used as proxies to estimate the local baseline oxygen consumption, which is a hallmark of cell activity. However, the oxygen profile around a given arteriole arises from an interplay between oxygen consumption and delivery, not only by this arteriole but also by distant capillaries.

View Article and Find Full Text PDF
Article Synopsis
  • Aging and cerebral diseases can alter brain microvascular networks, leading to reduced blood flow and potential neuronal death.
  • Developing accurate models of these networks is challenging due to the vast number of brain vessels but is crucial for understanding how changes affect blood supply.
  • The proposed hybrid model effectively combines a simplified approach for capillaries with detailed modeling for larger vessels, resulting in improved accuracy and efficiency for large-scale simulations of cerebral blood flow.
View Article and Find Full Text PDF

We investigate numerically, for the first time, the thermal counterflow of superfluid helium past a cylinder by solving with a finite volume method the complete so-called two-fluid model. In agreement with existing experimental results, we obtain symmetrical eddies both up- and downstream of the obstacle. The generation of these eddies is a complex transient phenomenon that involves the friction of the normal fluid component with the solid walls and the mutual friction between the superfluid and normal components.

View Article and Find Full Text PDF

Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6).

View Article and Find Full Text PDF

One the one hand, capillary permeability to water is a well-defined concept in microvascular physiology, and linearly relates the net convective or diffusive mass fluxes (by unit area) to the differences in pressure or concentration, respectively, that drive them through the vessel wall. On the other hand, the permeability coefficient is a central parameter introduced when modeling diffusible tracers transfer from blood vessels to tissue in the framework of compartmental models, in such a way that it is implicitly considered as being identical to the capillary permeability. Despite their simplifying assumptions, such models are at the basis of blood flow quantification by H2(15)O Positron Emission Tomgraphy.

View Article and Find Full Text PDF

In a recent paper, Valdès-Parada and Alvarez-Ramirez [Phys. Rev. E 84, 031201 (2011)] used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, D(γ)(*), the goal of which is to describe solute transport in porous media undergoing periodic processes.

View Article and Find Full Text PDF

In this study we describe a scheme for numerically calculating the effective diffusivity of cellular systems such as biofilms and tissues. This work extends previous studies in which we developed the macroscale representations of the transport equations for cellular systems based on the subcellular-scale transport and reaction processes. A finite-difference model is used to predict the effective diffusivity of a cellular system on the basis of the subcellular-scale geometry and transport parameters.

View Article and Find Full Text PDF