Publications by authors named "Michel Ponchet"

The Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules.

View Article and Find Full Text PDF

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato.

View Article and Find Full Text PDF

Homeostasis between the cytoplasmic plant hormone salicylic acid (SA) and its' inactive, vacuolar storage forms, SA-2-β-D-glucoside (SAG) and SA-β-D-Glucose Ester (SGE), regulates the fine-tuning of defense responses to biotrophic pathogens in . This protocol describes a simplified, optimized procedure to extract and quantify free SA and total hydrolyzable SA in plant tissues using a classical HPLC-based method.

View Article and Find Full Text PDF

Background: Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops and plants from natural ecosystems. Despite their tremendous economic and ecologic importance, few effective methods exist for limiting the damage caused by these species.

View Article and Find Full Text PDF

The plant pathogen Phytophthora parasitica forms a biofilm on the host surface. The biofilm transcriptome is characterized by the expression of PPMUCL1/2/3 (PHYTOPHTHORA PARASITICA MUCIN-LIKE) genes, which we report here to be members of a new, large mucin-like gene family restricted to the oomycete lineage. These genes encode secreted proteins organized into two domains.

View Article and Find Full Text PDF

Vertebrate females transfer antibodies via the placenta, colostrum and milk or via the egg yolk to protect their immunologically immature offspring against pathogens. This evolutionarily important transfer of immunity is poorly documented in invertebrates and basic questions remain regarding the nature and extent of parental protection of offspring. In this study, we show that a lipopolysaccharide binding protein/bactericidal permeability increasing protein family member from the invertebrate Biomphalaria glabrata (BgLBP/BPI1) is massively loaded into the eggs of this freshwater snail.

View Article and Find Full Text PDF

Pathogenic oomycetes have evolved RXLR effectors to thwart plant defense mechanisms and invade host tissues. We analysed the function of one of these effectors (Penetration-Specific Effector 1 (PSE1)) whose transcript is transiently accumulated during penetration of host roots by the oomycete Phytophthora parasitica. Expression of PSE1 protein in tobacco (Nicotiana tabacum and Nicotiana benthamiana) leaves and in Arabidopsis thaliana plants was used to assess the role of this effector in plant physiology and in interactions with pathogens.

View Article and Find Full Text PDF

The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease.

View Article and Find Full Text PDF

Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula.

View Article and Find Full Text PDF

Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition.

View Article and Find Full Text PDF

The class 1 pathogenesis-related (PR) proteins are thought to be involved in plant defence responses, but their molecular functions are unknown. The function of PR-1 was investigated in tobacco by generating stable PR-1a-silenced lines in which other acidic PR-1 genes (PR-1b and PR-1c) were silenced. Plants lacking extracellular PR-1s were more susceptible than wild-type plants to the oomycete Phytophthora parasitica but displayed unaffected systemic acquired resistance and developmental resistance to this pathogen.

View Article and Find Full Text PDF

The structure of sylvaticin, a 10 kDa major pythin protein excreted by the parasitic oomycete Pythium sylvaticum, has been determined. Although closely related to alpha-elicitins in its biological response, toxicity and overall structure, sylvaticin presents a number of structural features that make it an unusual member of the elicitin class. Elicitins possess a large hydrophobic cavity and the mechanism of the systemic acquired resistance induced in planta is known to proceed through lipid transport and complexation within this cavity.

View Article and Find Full Text PDF

Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the alpha-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid.

View Article and Find Full Text PDF

Plant LTP1 are small helical proteins stabilized by four disulfide bridges and are characterized by the presence of an internal cavity, in which various hydrophobic ligands can be inserted. Recently, we have determined the solution structure of the recombinant tobacco LTP1_1. Unexpectedly, despite a global fold very similar to the structures already known for cereal seed LTP1, its binding properties are different: Tobacco LTP1_1 is able to bind only one monoacylated lipid, whereas cereal LTP1 can bind either one or two.

View Article and Find Full Text PDF

We prepared a series of cryptogein mutants, an elicitor from Phytophthora cryptogea, with altered abilities to bind sterols and fatty acids. The induction of the early events, i.e.

View Article and Find Full Text PDF

Plant lipid transfer proteins are small soluble extracellular proteins that are able to bind and transfer a variety of lipids in vitro. Recently, it has been proposed that lipid transfer proteins may play a key role in plant defence mechanisms, especially during the induction of systemic acquired resistance. However, very little is known about the proteins expressed in developing plants and tissues, since almost all the biophysical and structural data available to date on lipid transfer proteins originate from proteins present in storage tissues of monocot cereal seeds.

View Article and Find Full Text PDF

The hydrophobic cavity of Lipid Transfer Protein 1 from Nicotiana tabacum is investigated in detail by NMR using xenon as a spy. The analysis of the (129)Xe chemical shifts and self-relaxation times gives evidence of protein-xenon interaction. Thermodynamics of the binding is characterized through the study of aliphatic (1)H and (13)C chemical shift variation as a function of xenon pressure.

View Article and Find Full Text PDF

Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid.

View Article and Find Full Text PDF

Sylvaticin belongs to the elicitin family. These 10 kDa oomycetous proteins induce a hypersensitive response in plants, including necrosis and cell death, but subsequently leading to a non-specific systemic acquired resistance (SAR) against other pathogens. Sylvaticin has been crystallized using PEG 2000 MME as a precipitant agent in the presence of nickel chloride.

View Article and Find Full Text PDF

The uptake of cholesterol has been characterized in leaf discs from mature leaves of sugar beet ( Beta vulgaris L.). This transport system exhibited a simple saturable phase with an apparent Michaelis constant ranging from 30 to 190 microM depending on the sample.

View Article and Find Full Text PDF

Cryptogein is a small 10 kDa elicitor produced by the phytoparasitic oomycete Phytophthora cryptogea. The protein also displays a sterol carrier activity. The native protein crystallizes in space group P4(1)22, with unit-cell parameters a = b = 46.

View Article and Find Full Text PDF

Elicitins and lipid-transfer proteins are small cysteine-rich lipid-binding proteins secreted by oomycetes and plant cells, respectively, that share some structural and functional properties. In spite of intensive work on their structure and diversity at the protein and genetic levels, the precise biological roles of lipid-transfer proteins remains unclear, although the most recent data suggest a role in somatic embryogenesis, in the formation of protective surface layers and in defence against pathogens. By contrast, elicitins are known elicitors of plant defence, and recent work demonstrating that elicitins and lipid-transfer proteins share the same biological receptors gives a new perspective to understand the role played by lipid binding proteins, mainly the early recognition of intruders in plants.

View Article and Find Full Text PDF

Ribonuclease (RNase) NE gene expression is induced in tobacco leaves in response to Phytophthora parasitica. Using antibodies directed against RNase NE, we demonstrate that RNase NE is extracellular at the early steps of the interaction, while the fungal tip growth is initiated in the apoplastic compartment. After production in Pichia pastoris and biochemical purification, we show that the S-like RNase NE inhibits hyphal growth from P.

View Article and Find Full Text PDF