Polyethylene wear has been a concern for the longevity of total knee replacements (TKR). A characteristic wear feature often observed on the articular surfaces of retrieved polyethylene tibial inserts is a striated pattern of hills and troughs. This pattern is of interest because its surface area has been found to correlate with increased tibial insert wear.
View Article and Find Full Text PDFThe equine model of posttraumatic osteoarthritis (OA) mimics certain aspects of the naturally occurring disease, both in horses and humans. The objective of this study was to assess articular cartilage degeneration in a posttraumatic OA model using the established macroscopic and microscopic scoring systems and compare them with a novel surface topography analysis. OA was induced in the carpal joint of 15 (n = 15) mixed breed horses.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2021
As a mechanoactive tissue, articular cartilage undergoes compression and shear on a daily basis. With the advent of high resolution and sensitive mechanical testing methods, such as micro- and nanoindentation, it has become possible to assess changes in small-scale mechanical properties due to compression and shear of the tissue. However, investigations on the changes of these properties before and after joint articulation have been limited.
View Article and Find Full Text PDFThe aim of this study was to determine the effect of two in-vivo-determined gait patterns, one with low and one with high anteroposterior (AP) motion, on total and backside polyethylene insert wear in comparison with the ISO (International Organization for Standardization) standard 14243-3. In order to differentiate and accurately quantify topside and backside wear, a novel technique was employed where different lanthanide tracers were incorporated into the polyethylene during manufacture. Wear particle analysis was conducted following established protocols.
View Article and Find Full Text PDFThe purpose of this retrieval study was to determine the effect of implant positioning on wear, taking patient-related factors into account. Therefore, the volumetric material loss of 59 retrieved tibial liners was quantitatively determined using a coordinate measuring-machine. All retrievals were made of the same polyethylene and design by a single manufacturer.
View Article and Find Full Text PDFBackground: There is interest in minimally invasive solutions that reduce osteoarthritic symptoms and restore joint mobility in the early stages of cartilage degeneration. The aim of the present study was to evaluate an alumina-zirconia composite (AZC) as a counterface for articulation against live cartilage explants in comparison to the clinically relevant cobalt-chromium (CoCrMo) alloy.
Methods: A four-station bioreactor designed to articulate against living tissue in an incubator was used for testing.
Introduction: Pre-clinical testing of hemiarthroplasty devices requires that the tribological conditions present in vivo with live cartilage be closely duplicated. A current limitation in the tribological testing of live cartilage involves the use of cell-culture media as lubricant.
Study Aim: to develop and test a new hyaluronan-phospholipid based medium (HA-phospholipid medium) that combines the rheological and frictional properties of synovial fluid with the nourishing properties of culture media to keep cells alive.
Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts.
View Article and Find Full Text PDFIt is well established that the total protein concentration and albumin-to-globulin ratio influence the wear of ultra-high molecular polyethylene (UHMWPE, "polyethylene") in joint prostheses. A factor on wear not yet studied, but of possible clinical relevance, is protein cleavage. Such cleavage is expected in the presence of an inflammatory response and as a result of wear processes at the articular interface.
View Article and Find Full Text PDFObjective To investigate the responses of refrigerated osteochondral allograft cartilage (OCA) and fresh cartilage (FC), including cell survival and metabolism, to surgical impaction and proinflammatory cytokines. Design Osteochondral plugs (8 mm diameter) were harvested from prolonged-refrigerated (14-28 days) and fresh (≤24 hours postmortem) human femoral hemicondyles and subjected to a 0.2 N s pneumatic impaction impulse.
View Article and Find Full Text PDFBackground: The longevity of total hip (THR) and knee replacements (TKR) that used historical bearing materials of gamma-in-air sterilized UHMWPE was affected more by osteolysis in THRs than in TKRs, although osteolysis remains a concern in TKRs. Therefore, the study of polyethylene wear is still of interest for the knee, particularly because few studies have investigated volumetric material loss in tibial knee inserts. For this study, a unique collection of autopsy-retrieved TKR and THR components that were well-functioning at the time of retrieval was used to compare volumetric wear differences between hip and knee polyethylene components made from identical material.
View Article and Find Full Text PDFBackground: Total hip arthroplasty (THA) continues to be one of the most successful surgical procedures in the medical field. However, over the last two decades, the use of modularity and alternative bearings in THA has become routine. Given the known problems associated with hard-on-hard bearing couples, including taper failures with more modular stem designs, local and systemic effects from metal-on-metal bearings, and fractures with ceramic-on-ceramic bearings, it is not known whether in aggregate the survivorship of these implants is better or worse than the metal-on-polyethylene bearings that they sought to replace.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2013
The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE.
View Article and Find Full Text PDFBackground: Surface damage of the tibial polyethylene insert in TKA is thought to diminish with increasing conformity, based on computed lower contact stresses. Added constraint from higher conformity may, however, result in greater forces in vivo.
Questions/purposes: We therefore determined whether increased conformity was associated with increased surface pitting, delamination, creep, and polishing in a group of retrieved tibial inserts.
The objective of this pilot study is to investigate the effect of europium(II) stearate additive on the mechanical properties and oxidation resistance of an ultra-high molecular weight polyethylene (UHMWPE), which has been used as an articulating surface in prosthetic devices for many years. It is hypothesized in this study that combining the UHMWPE with lanthanide stearates could enhance oxidation resistance, leading to better preservation of the material's mechanical integrity. Compression molded UHMWPE was doped at 0, 375 and 750 ppm of europium(II) stearate, γ-irradiated to 35 kGy in a nitrogen atmosphere, and accelerated aged in accordance with the ASTM standard F2003-02.
View Article and Find Full Text PDFBackground: Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in prosthetic devices. Its failure under various mechanisms after oxidation is of utmost concern. Free radicals formed during the sterilization process using high-energy irradiation result in oxidation.
View Article and Find Full Text PDFThis article reports on a commercially available extensively cross-linked ultrahigh molecular-weight polyethylene (HXPE) produced by subjecting molded GUR 1050 ultrahigh molecular-weight polyethylene (UHMWPE) to 100 +/- 10 kGy of electron beam radiation followed by melt annealing and sterilization by gas plasma. When compared to contemporary conventional molded GUR 1050 UHMWPE sterilized by 37 kGy of gamma radiation, the HXPE material has enhanced wear properties, has no detectable free radicals, and is resistant to oxidation and oxidative-related material property changes. The relative wear improvement of the HXPE is maintained in the presence of bone cement or alumina particles.
View Article and Find Full Text PDFHighly cross-linked polyethylenes (HXPEs) have been introduced to reduce wear after hip arthroplasty. The improved wear characteristics of HXPEs are well documented, but the relative biologic activity of HXPE and conventional polyethylene (CPE) particles remains unclear. Longevity (Zimmer, Warsaw, Ind; HXPE) and GUR 1050 (Zimmer; CPE) particles were isolated and characterized from a hip simulator and their in vitro inflammatory responses (tissue necrosis factor *, interleukin 1*, and vascular endothelial growth factor levels) were compared using macrophages.
View Article and Find Full Text PDFClinically retrieved highly cross-linked ultrahigh molecular weight polyethylene (HXPE) acetabular liners have demonstrated scratching, whereas conventional ultrahigh-molecular-weight polyethylene (UHMWPE) implants show a smoother surface early after implantation. In the present study, the potential of bone particles and soft tissues, rather than cement, to scratch the articular surface of HXPE and UHMWPE (gamma radiated) acetabular components was evaluated; multiple bone particles located at the articular surface for 3600 simulated walking cycles replicated the scratches observed on retrieved implants. By remelting, these scratches were confirmed to be due to plastic deformation of the polyethylene, not wear.
View Article and Find Full Text PDF