The discovery of novel chemical classes with novel modes of action for insect control form the backbone of innovation with the goal to deliver much-needed solutions into the hands of growers. Over the last decade, alkyl sulfones have emerged as one of the most versatile new classes and are under intensive investigation in many R&D programs in the industry, with Sumitomo Chemicals recently introducing oxazosulfyl as a first active ingredient to the market. In this review, we discuss some of our strategies to invent novel classes based upon ligand-based design, and also show how incorporation of physical chemical properties into our design enabled us to predictably control chewing and sucking pests.
View Article and Find Full Text PDFInsecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects.
View Article and Find Full Text PDFPyridine alkylsulfone derivatives typified by oxazosulfyl (Sumitomo Chemical Company Ltd.) and compound A2 (Syngenta) represent a new class of insecticides, with potent activity against several insect orders. Whilst the MOA of this class has been attributed to interaction with the voltage-gated sodium channel (VGSC), here we present strong evidence that their toxicity to insects is mediated primarily through inhibition of the vesicular acetylcholine transporter (VAChT).
View Article and Find Full Text PDFBackground: Crop protection solutions for the control of key economic sucking pests derive essentially from neuronal and muscular acting chemistries, wherein neonicotinoid uses largely dominated for the last two decades. Anticipating likely resistance development of some of those arthropod species to this particular class, we intensified research activities on a non-neuronal site of action targeting insect growth and development some 10 years ago.
Results: Our innovation path featured reactivation of a scarcely used and simple building block from the 1960s, namely N-methoxy-4-piperidone 3.
Bioorg Med Chem Lett
February 2018
Novel 2-aryl-cyclic-1,3-diones containing a 5-methoxy-[1,2,5]triazepane unit were explored towards an effective and wheat safe control of grass weeds. Their preparation builds on the ease of synthetic access to 7-membered heterocyclic [1,2,5]triazepane building blocks. Substitution and pattern hopping in the phenyl moiety revealed structure-activity relationships in good agreement with previously disclosed observations amongst the pinoxaden family of acetyl-CoA carboxylase inhibitors.
View Article and Find Full Text PDFBackground: Pinoxaden is a new cereal herbicide that provides outstanding levels of post-emergence activity against a broad spectrum of grass weed species for worldwide selective use in both wheat and barley.
Results: Factors influencing activity and tolerance to pinoxaden were in part linked to distinct structural parts of the active ingredient. Three complementary contributions that decisively impact upon the herbicidal potency against grasses were identified: a preferred 2,6-diethyl-4-methyl aromatic substitution pattern, a dione area suitable for proherbicide formation and beneficial adjuvant effects.
Derivatives of the new class of 3-hydroxy-4-phenyl-5-oxo-pyrazolines were optimized towards both herbicidal activity on key annual grass weed species and selectivity in small grain cereal crops. The generic structure can be separated into three parts for the analysis of the structure-activity relationships, namely the aryl, the dione with its prodrug forms and the hydrazine moiety. Each area appears to play distinct and different roles in overall expression of biological performance which is further beneficially influenced by adjuvant response and safener action.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.