Publications by authors named "Michel Mayor"

Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations.

View Article and Find Full Text PDF
Article Synopsis
  • A new transiting planet has been discovered orbiting the star Men (HD 39091), known for its brightness and existing Jovian planet.
  • The newly detected planet is about 2.04 times the size of Earth and has a rapid orbital period of 6.27 days, with mass determined to be approximately 4.82 times that of Earth.
  • The star's brightness and closeness to Earth will enable detailed future studies, including examining the planet's atmosphere and other astrophysical phenomena.
View Article and Find Full Text PDF

M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Doppler spectroscopy was the initial method that provided evidence for planets orbiting solar-type stars, leading to the discovery of a variety of super-Earths and Neptune-type planets.
  • - The combination of Doppler measurements and photometric observations helps in determining the bulk density of these exoplanets, which is crucial for comparative studies of their characteristics.
  • - Advancements in high-precision instruments and space-based observatories are expected to improve our understanding of rocky planets located in the habitable zones of nearby stars.
View Article and Find Full Text PDF

Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition.

View Article and Find Full Text PDF

Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations.

View Article and Find Full Text PDF

Today, more than 400 extra-solar planets have been discovered. They provide strong constraints on the structure and formation mechanisms of planetary systems. Despite this huge amount of data, we still have little information concerning the constraints for extra-terrestrial life, i.

View Article and Find Full Text PDF
Article Synopsis
  • A decade ago, the detection of the first transiting extrasolar planet allowed scientists to begin studying the atmospheres of these planets, particularly targeting nearby small stars with favorable planet-to-star size ratios.
  • Researchers discovered a category of planets called super-Earths, which have minimum masses between 1.9 to 10 times that of Earth, with the first real composition data coming from a planet named CoRoT-7b.
  • The newly observed planet GJ 1214b, with a mass of 6.55 times that of Earth and a larger radius, is thought to consist mainly of water and has a thin hydrogen-helium atmosphere, making it a good candidate for atmospheric studies due to its proximity.
View Article and Find Full Text PDF

The surface abundance of lithium on the Sun is 140 times less than the protosolar value, yet the temperature at the base of the surface convective zone is not hot enough to burn-and hence deplete-Li (refs 2, 3). A large range of Li abundances is observed in solar-type stars of the same age, mass and metallicity as the Sun, but such a range is theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets.

View Article and Find Full Text PDF

Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.

View Article and Find Full Text PDF

Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

View Article and Find Full Text PDF

Stars are spheres of hot gas whose interiors transmit acoustic waves very efficiently. Geologists learn about the interior structure of Earth by monitoring how seismic waves propagate through it and, in a similar way, the interior of a star can be probed using the periodic motions on the surface that arise from such waves. Matthews et al.

View Article and Find Full Text PDF