Publications by authors named "Michel Lafleur"

One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline.

View Article and Find Full Text PDF

The stratum corneum (SC), the outermost layer of mammal epidermis, acts as a barrier dictating the rate of absorption of exogenous molecules through the skin, as well as to prevent excessive water loss from the body. The SC consists of protein-rich corneocytes embedded into a complex lipid mixture. The lipid fraction is mainly constituted of an equimolar mixture of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), forming a solid phase in the intracellular space; this lipid phase is supposed to play a fundamental role in the SC barrier function.

View Article and Find Full Text PDF

Despite numerous studies on detergent-induced solubilization of membranes and on the underlying mechanisms associated with this process, very little is known regarding the selectivity of detergents for lipids during their extraction from membranes. To get insights about this phenomenon, solubilization of model bilayers prepared from binary lipid mixtures by different detergents was examined. Three commonly used detergents were used: the non-ionic Triton X-100 (TX), the negatively-charged sodium dodecylsulfate (SDS), and the positively-charged n-dodecyltrimethylammonium chloride (DTAC).

View Article and Find Full Text PDF

The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers.

View Article and Find Full Text PDF

Alkanes are known to promote the fluid lamellar (L)-to-inverted hexagonal (H) phase transition of different phospholipids. In this work, we studied the interaction of decane and tetradecane with self-assemblies formed of 1-palmitoyl-2-oleoyl-sn-glycero-phosphoethanolamine (POPE), using sequential H and P solid-state NMR spectroscopy. This technique allowed calculating the partitioning constant of the alkanes between the L and H phases of POPE.

View Article and Find Full Text PDF

Alzheimer's disease is a devastating pathology affecting an increasing number of individuals following the general rise in life expectancy. Amyloid peptide Aβ has been identified as one of the main culprits of the disease. The peptide has been shown to have major effects on lipid membranes, including membrane fragmentation.

View Article and Find Full Text PDF

The stratum corneum (SC), the top layer of skin, dictates the rate of both water loss through the skin and absorption of exogenous molecules into the body. The crystalline organization of the lipids in the SC is believed to be a key feature associated with the very limited permeability of the skin. In this work, we characterized the organization of SC lipid models that include, as in native SC, cholesterol, a series of FFAs (saturated with C16-C24 chains), as well as a ceramide bearing an oleate chain-linked to a very long saturated acyl chain [-melissoyl-oleoyloxy hexacosanoyl-D--sphingosine (Cer EOS)].

View Article and Find Full Text PDF

Sterosomes are recently developed types of non-phospholipid liposomes formed from single-chain amphiphiles and high content of sterols. Although sterosomes presented significantly increased stability compared to conventional phospholipid liposomes, current sterosome biomaterials are not truly bioactive and have no intrinsic therapeutic effects. The purpose of this study was to develop a sterosome formulation with osteoinductive properties by an effective selection of sterol, one of the sterosome components.

View Article and Find Full Text PDF

Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 mol %) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), using differential scanning calorimetry, and sequential H and P solid-state nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Sterosomes (STEs), a new and promising non-phospholipidic liposome platform based on palmitic acid (PA) and cholesterol (Chol) mixtures, need to have polyethylene glycol (PEG) chains grafted to their surface in order to obtain long-circulating nanocarriers in the blood stream. A post-insertion method was chosen to achieve this modification. The post-insertion process of PEG-modified distearoylphosphoethanolamine (DSPE-PEG) was monitored using the zeta potential value of STEs.

View Article and Find Full Text PDF

Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref.

View Article and Find Full Text PDF

Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is to determine how VLCFA structurally adapts in fluid phospholipid bilayers, since both species must exhibit a significant hydrophobic mismatch.

View Article and Find Full Text PDF

The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2).

View Article and Find Full Text PDF

Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide.

View Article and Find Full Text PDF

The skin, the largest organ of the human body, forms a flexible interface between our internal and external environment that protects our organism from exogenous compounds as well as excessive water loss. The stratum corneum (SC), the outermost layer of mammal epidermis, is mainly responsible for the skin impermeability. The SC is formed by corneocytes embedded in a lipid matrix, which is mostly constituted of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), organized in two coexisting crystalline lamellar phases.

View Article and Find Full Text PDF

Binder of sperm (BSP) proteins are ubiquitous among mammals and have been extensively investigated over the last three decades. They were first characterized in bull seminal plasma and have now been identified in more than 15 different mammalian species where they represent a superfamily. In addition to sharing a common structure, BSP proteins share many characteristics.

View Article and Find Full Text PDF

SN-38 is a highly effective drug against many cancers. The development of an optimal delivery system for SN-38 is extremely challenging due to its low solubility and labile lactone ring. Herein, SN-38 encapsulated in poly(D,L-lactide-co-glycolide) nanoparticles (NPs) is introduced to enhance its solubility, stability and cellular uptake.

View Article and Find Full Text PDF

Background: Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage.

View Article and Find Full Text PDF

We created novel nonphospholipid photosensitive liposomes from a mixture of a monoacylated azobenzene amphiphile (AzoC10N(+)) and cholesterol sulfate (Schol). This system belongs to the family of sterol-enriched nonphospholipid liposomes that were shown to form stable large unilamellar vesicles (LUVs) with enhanced impermeability. Fluid bilayers were successfully prepared from AzoC10N(+)/Schol (25/75 molar ratio) mixtures, and LUVs could be derived at room temperature using standard extrusion methods.

View Article and Find Full Text PDF

Despite the fact that palmitic acid (PA) and cholesterol (Chol) do not form fluid bilayers once hydrated individually, giant unilamellar vesicles (GUVs) were formed from a mixture of palmitic acid and cholesterol, 30/70 mol/mol. These free-floating GUVs were stable over weeks, did not aggregate and were shown to be highly stable in alkaline pH compared to conventional phospholipid-based GUVs. Acidic pH-triggered payload release from the GUVs was associated with the protonation state of palmitic acid that dictated the mixing lipid properties, thus affecting the stability of the fluid lamellar phase.

View Article and Find Full Text PDF

Hypothesis: Liposomes made of single-chain amphiphiles and a large amount of sterols display several advantages including a limited permeability. In the present paper, we examine the possibility to prepare such non-phospholipid liposomes with interfacial polyethylene glycol (PEG) in order to improve their circulation in the blood stream. Cholesterol (Chol) was chosen as the PEG anchor.

View Article and Find Full Text PDF

Typically, single-chain amphiphiles and sterols do not form fluid lamellar phases once hydrated individually. Most of the single-chain amphiphiles form actually micelles in aqueous environments, while sterols display a very limited solubility in water. However, under certain conditions, mixtures of single-chain amphiphiles and sterols lead to the formation of stable fluid bilayers.

View Article and Find Full Text PDF

Cetylpyridinium chloride (CPC) is a surfactant that binds strongly to bacteria and bacterial biofilms. In this study, fluorescence-based techniques were used to determine the penetration and adhesion of CPC when it was introduced in liposomes. In spite of a reduced adhesion as compared to pure CPC micelles, CPC-containing liposomes adhered significantly to the biofilms of Streptococcus mutans.

View Article and Find Full Text PDF

The skin acts mainly as a protective barrier from the external environment, thanks to the stratum corneum which is the outermost layer of the skin. As in vitro tests on skin are essential to elaborate new drugs, the development of skin models closer to reality becomes essential. It is now possible to produce in vitro human skin substitutes through tissue engineering by using the self-assembly method developed by the Laboratoire d'Organogénèse Expérimentale.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc31tcv5g7jkmt3q3jo3qadh365ugfg8n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once