Publications by authors named "Michel Khrestchatisky"

We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer's disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21-24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP (MT5), 5xFAD (Tg), and 5xFADxMT5-MMP (TgMT5) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors.

View Article and Find Full Text PDF

Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough of our era. However, the functional and specific delivery of siRNAs into tissues of interest and into the cytosol of target cells remains highly challenging, mainly due to the lack of efficient and selective delivery systems.

View Article and Find Full Text PDF

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE.

View Article and Find Full Text PDF

Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern.

View Article and Find Full Text PDF

Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells.

View Article and Find Full Text PDF

The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB.

View Article and Find Full Text PDF

Background: The 5XFAD model of Alzheimer's disease (AD) bearing five familial mutations of Alzheimer's disease on human APP and PSEN1 transgenes shows deposits of amyloid-β peptide (Aβ) as early as 2 months, while deficits in long-term memory can be detected at 4 months using the highly sensitive olfactory-dependent tests that we previously reported.

Objective: Given that detecting early dysfunctions in AD prior to overt pathology is of major interest in the field, we sought to detect memory deficits at earlier stages of the disease in 3-month-old male 5XFAD mice.

Methods: To this end, we used the Helico Maze, a behavioral task that was recently developed and patented.

View Article and Find Full Text PDF

Background: Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1β)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1β tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation.

View Article and Find Full Text PDF

Despite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR).

View Article and Find Full Text PDF

Neurotensin (NT) acts as a primary neurotransmitter and neuromodulator in the CNS and has been involved in a number of CNS pathologies including epilepsy. NT mediates its central and peripheral effects by interacting with the NTSR1, NTSR2, and Sort1/NTSR3 receptor subtypes. To date, little is known about the precise expression of the NT receptors in brain neural cells and their regulation in pathology.

View Article and Find Full Text PDF

We previously discovered the implication of membrane-type 5-matrix metalloproteinase (MT5-MMP) in Alzheimer's disease (AD) pathogenesis. Here, we shed new light on pathogenic mechanisms by which MT5-MMP controls the processing of amyloid precursor protein (APP) and the fate of amyloid beta peptide (Aβ) as well as its precursor C99, and C83. We found in human embryonic kidney cells (HEK) carrying the APP Swedish familial mutation (HEKswe) that deleting the C-terminal non-catalytic domains of MT5-MMP hampered its ability to process APP and release the soluble 95 kDa form (sAPP95).

View Article and Find Full Text PDF

Different memory systems operate in parallel to support behaviour. To evaluate procedural and reference subcategories of long-term memory as early as possible in the mouse, the Helico Maze (HM) was developed. BALB/c AnNCrl (BALB), C57BL/6JRj (C57) and DBA/2 JRj (DBA) mice were trained on this new maze.

View Article and Find Full Text PDF

α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo.

View Article and Find Full Text PDF

The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).

View Article and Find Full Text PDF

The blood-brain barrier (BBB) regulates the traffic of molecules into the central nervous system (CNS) and also limits the drug delivery. Due to their flexible properties, liposomes are an attractive tool to deliver drugs across the BBB. We previously characterized gH625, a peptide derived from Herpes simplex virus 1.

View Article and Find Full Text PDF

As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies.

View Article and Find Full Text PDF

Background: Inflammation and demyelination are the main processes in multiple sclerosis. Nevertheless, to date, blood biomarkers of inflammation are lacking. TWEAK, a transmembrane protein that belongs to the TNF ligand family, has been previously identified as a potential candidate.

View Article and Find Full Text PDF

We previously demonstrated that membrane type 1 (MT1) matrix metalloproteinase (MMP) was up-regulated in the hippocampus of the model of transgenic mice bearing 5 familial mutations on human amyloid precursor protein (APP) and presenilin 1 of Alzheimer disease (AD), and that the proteinase increased the levels of amyloid β peptide (Aβ) and its APP C-terminal fragment of 99 aa in a heterologous cell system. Here we provide further evidence that MT1-MMP interacts with APP and promotes amyloidogenesis in a proteolytic-dependent manner in Swedish APP-expressing human embryonic kidney 293 (HEKswe) cells. MT1-MMP-mediated processing of APP releases a soluble APP fragment, sAPP95.

View Article and Find Full Text PDF

Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the "olfactory ectomesenchymal stem cells" (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury.

View Article and Find Full Text PDF

Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor.

View Article and Find Full Text PDF

The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm).

View Article and Find Full Text PDF

Background: Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells.

View Article and Find Full Text PDF

This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases.

View Article and Find Full Text PDF