The local electrochemical behavior of a solid-liquid interface can be studied by electrochemical impedance spectroscopy (EIS). The investigated surface area can be delimited by adding a drop of solution, which forms an interface between the liquid drop and the working electrode, and performing the measurements inside. The size of the drop must be sufficiently small for a simultaneous wettability characterization (from the contact angle measurement) and appropriately large so that wettability is not influenced by the presence of the working and the counter electrode inserted in the droplet.
View Article and Find Full Text PDFThe development of the scanning electrochemical microscope in ac mode is presented from both experimental and theoretical point of views. The experiments are performed with the ferri/ferrocyanide redox mediator as model system. Based on analysis of the frequency-dependent collection efficiency, diffusion between the probe and the substrate is investigated, and analysis of time constants allows evaluation of the size of the sensing area under investigation.
View Article and Find Full Text PDFA scanning electrochemical microscope (SECM) in ac mode is used for the characterisation of the adsorption process during the hydrogen evolution reaction (HER) in sulfuric acid solution. It is shown that this technique allows quantitative analysis of the adsorption process, and measurements of the differential capacitance with the frequency as parameter are obtained. The time constant for relaxation of adsorbed hydrogen (H(ads)) is approximately 2 Hz, and analysis of the Nyquist plot allows direct evaluation of the charge involved.
View Article and Find Full Text PDFScanning electrochemical microscopy (SECM) is a powerful technique for performing quantitative measurements at a local scale. This paper covers the development of combinations of SECM with electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (EQCM). Basic aspects are described and potential applications reported by several research groups are covered.
View Article and Find Full Text PDFThis paper describes a driving circuit for an electrochemical quartz crystal microbalance (EQCM) adapted to a wide range of applications. The oscillator is a Miller-type parallel oscillator using an operational transconductance amplifier (OTA). A theoretical study of the oscillating circuit led to the analytical expression of the microbalance frequency as well as to an overestimation of the error on the mass measurement.
View Article and Find Full Text PDF