The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites.
View Article and Find Full Text PDFTreatment failure in acute myeloid leukemia (AML) is frequently due to the persistence of a cell population resistant to chemotherapy through different mechanisms, in which drug efflux via ATP-binding cassette (ABC) proteins, specifically P-glycoprotein, is one of the most recognized. However, disappointing results from clinical trials employing inhibitors for these transporters have demonstrated the need to adopt different strategies. We hypothesized that microtubule targeting compounds presenting high affinity or covalent binding could overcome the effect of ABC transporters.
View Article and Find Full Text PDFThe natural product L-783277 is a resorcylic lactone type covalent kinase inhibitor. We have prepared the 5'-deoxy analogue of L-783277 (1) in a stereoselective fashion. Remarkably, this analogue retains almost the full kinase inhibitory potential of natural L-783277, with low nanomolar IC50 values against the most sensitive kinases, and it exhibits essentially the same selectivity profile (within the panel of 39 kinases investigated).
View Article and Find Full Text PDF