The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.
View Article and Find Full Text PDFThe facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B.
View Article and Find Full Text PDFMucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts.
View Article and Find Full Text PDFKnowledge of intracellular location can provide important insights into the function of proteins and their respective organelles, and there is interest in combining classical subcellular fractionation with quantitative mass spectrometry to create global cellular maps. To evaluate mass spectrometric approaches specifically for this application, we analyzed rat liver differential centrifugation and Nycodenz density gradient subcellular fractions by tandem mass tag (TMT) isobaric labeling with reporter ion measurement at the MS2 and MS3 level and with two different label-free peak integration approaches, MS1 and data independent acquisition (DIA). TMT-MS2 provided the greatest proteome coverage, but ratio compression from contaminating background ions resulted in a narrower accurate dynamic range compared to TMT-MS3, MS1, and DIA, which were similar.
View Article and Find Full Text PDFObesity is characterized by an excessive triacylglycerol accumulation in white adipocytes. Various mechanisms allowing the tight regulation of triacylglycerol storage and mobilization by lipid droplet-associated proteins as well as lipolytic enzymes have been identified. Increasing energy expenditure by inducing a mild uncoupling of mitochondria in adipocytes might represent a putative interesting anti-obesity strategy as it reduces the adipose tissue triacylglycerol content (limiting alterations caused by cell hypertrophy) by stimulating lipolysis through yet unknown mechanisms, limiting the adverse effects of adipocyte hypertrophy.
View Article and Find Full Text PDFLysosomes degrade cellular components sequestered by autophagy or extracellular material internalized by endocytosis and phagocytosis. The macromolecule building blocks released by lysosomal hydrolysis are then exported to the cytosol by lysosomal transporters, which remain undercharacterized. In this study, we designed an in situ assay of lysosomal amino acid export based on the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis that detects lysosomal storage.
View Article and Find Full Text PDFAccurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere.
View Article and Find Full Text PDFATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2016
ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations.
View Article and Find Full Text PDFHow, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes.
View Article and Find Full Text PDFThe Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM.
View Article and Find Full Text PDFBackground: Several intracellular bacterial pathogens have evolved subtle strategies to subvert vesicular trafficking pathways of their host cells to avoid killing and to replicate inside the cells. Brucellae are Gram-negative facultative intracellular bacteria that are responsible for brucellosis, a worldwide extended chronic zoonosis. Following invasion, Brucella abortus is found in a vacuole that interacts first with various endosomal compartments and then with endoplasmic reticulum sub-compartments.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2014
It has long been known that liver lysosomes contain an endoglycosidase activity able to degrade the high molecular mass glycosaminoglycan hyaluronic acid (HA). The identification and cloning of a hyaluronidase with an acidic pH optimum, Hyal-1, suggested it might be responsible for this activity. However, we previously reported that this hydrolase could only be detected in pre-lysosomal compartments of the mouse liver using a zymography technique that allows the detection of Hyal-1 activity after SDS-PAGE ("renatured protein zymography").
View Article and Find Full Text PDFThe hyaluronidase Hyal-1 is an acid hydrolase that degrades hyaluronic acid (HA), a component of the extracellular matrix. It is often designated as a lysosomal protein. Yet few data are available on its intracellular localization and trafficking.
View Article and Find Full Text PDFLysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified.
View Article and Find Full Text PDFNCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood.
View Article and Find Full Text PDFLysosomes are cytoplasmic organelles delimited by a single membrane and filled with a variety of hydrolytic enzymes active at acidic pH and collectively capable to degrade the vast majority of macromolecules entering lysosomes via endocytosis, phagocytosis or autophagy. In this review, we describe the lipid composition and the dynamic properties of lysosomal membrane, the main delivery pathways of lipids to lysosomes and their catabolism inside lysosomes. Then, we present the consequences of a lipid accumulation as seen in various lysosomal storage diseases on lysosomal functions.
View Article and Find Full Text PDFNiemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles.
View Article and Find Full Text PDFThe rapid turnover rate of hyaluronan (HA), the major unbranched glycosaminoglycan of the extracellular matrix, is dependent on hyaluronidases. One of them, hyaluronidase-2 (Hyal2), degrades HA into smaller fragments endowed with specific biological activities such as inflammation and angiogenesis. Yet the cellular environment of Hyal2, a purported glycosylphosphatidylinositol (GPI)-anchored protein, remains uncertain.
View Article and Find Full Text PDFOne approach to the functional characterization of the lysosome lies in the use of proteomic methods to identify proteins in subcellular fractions enriched for this organelle. However, distinguishing between true lysosomal residents and proteins from other cofractionating organelles is challenging. To this end, we implemented a quantitative mass spectrometry approach based on the selective decrease in the buoyant density of liver lysosomes that occurs when animals are treated with Triton-WR1339.
View Article and Find Full Text PDFIt has been suggested that intracellular Hyal-1 (hyaluronidase-1), which is considered a lysosomal enzyme, originates via endocytosis of the serum enzyme. To test this proposal we have investigated the uptake and intracellular distribution of rhHyal-1 (recombinant human Hyal-1) by mouse liver, making use of centrifugation methods. Experiments were performed on wild-type mice injected with 125I-labelled rhHyal-1 and on Hyal-1-/- mice injected with the unlabelled enzyme, which were killed at various times after injection.
View Article and Find Full Text PDFClassical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease of children caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl peptidase 1. LINCL is characterized by lysosomal accumulation of storage material of which only a single protein component, subunit c of mitochondrial ATP synthase, has been well established to date. Identification of other protein constituents of the storage material could provide useful insights into the pathophysiology of disease and the natural substrates for TPP1.
View Article and Find Full Text PDFMost newly synthesized proteins destined for the lysosome reach this location via a specific intracellular pathway. In the Golgi, a phosphotransferase specifically labels lysosomal proteins with mannose 6-phosphate (Man-6-P). This modification is recognized by receptors that target the lysosomal proteins to the lysosome where, in most cell types, the Man-6-P recognition marker is rapidly removed.
View Article and Find Full Text PDFBackground Information: mtDNA (mitochondrial DNA) mutations that impair oxidative phosphorylation can contribute to carcinogenesis through the increased production of reactive oxygen species and through the release of proteins involved in cell motility and invasion. On the other hand, many human cancers are associated with both the up-regulation and the increased secretion of several proteases and heparanase. In the present study, we tried to determine whether the depletion in mtDNA could modulate the expression and/or the secretion of some lysosomal hydrolases in the 143B osteosarcoma cells, as these mtDNA-depleted cells are characterized by a higher degree of invasiveness than the parental cells.
View Article and Find Full Text PDF