Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive.
View Article and Find Full Text PDFTwo bismuth oxalates, namely, Bi(CO)·7HO and Bi(CO)OH, were studied in terms of synthesis, structural characterization, particle morphology, and thermal behavior under several atmospheres. The oxalate powders were produced by chemical precipitation from bismuth nitrate and oxalic acid solutions under controlled pH, then characterized by X-ray diffraction (XRD), temperature-dependent XRD, IR spectroscopy, scanning electron microscopy, and thermogravimetric differential thermal analyses. New results on the thermal decomposition of bismuth oxalates under inert or reducing atmospheres are provided.
View Article and Find Full Text PDFNanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death.
View Article and Find Full Text PDF