A series of bis(TTF) donors containing aromatic linkers between the two TTF units has been synthesized in order to investigate on the electronic structure of the oxidized species from an experimental and theoretical point of view. A mono(TTF)-pyridine compound has been also prepared and characterized by single-crystal X-ray diffraction analysis. Oxidation of a solution of 2,6-bis(TTF)-pyridine (TTF-Pyr-TTF) or of 1,3-bis(TTF)-benzene (TTF-Bz-TTF) in CH(2)Cl(2) with less than 0.
View Article and Find Full Text PDFA brief historical overview of physical chemistry at the University of Geneva as well as a description of the present research activities at the department of physical chemistry are presented.
View Article and Find Full Text PDFReaction of 2,4,6-trichloro-1,3,5-triazine with lithiated tetrathiafulvalene (TTF) in stoichiometric conditions, followed by treatment with sodium methanolate, provides mono- and bis(TTF)-triazines as new covalently linked (multi)donor-acceptor systems. Single-crystal X-ray analyses reveal planar structures for both compounds, with formation of peculiar segregated donor and acceptor stacks for the mono(TTF)-triazine compound, while mixed TTF-triazine stacks establish in the case of the bis(TTF) derivative. Cyclic voltammetry measurements show reversible oxidation of the TTF units, at rather low potential, with no splitting of the oxidation waves in the case of the dimeric TTF, whereas irreversible reduction of the triazine core is observed.
View Article and Find Full Text PDFWe describe the preparation of a helicate containing four closely spaced, linearly arrayed copper(I) ions. This product may be prepared either directly by mixing copper(I) with a set of precursor amine and aldehyde subcomponents, or indirectly through the dimerization of a dicopper(I) helicate upon addition of 1,2-phenylenediamine. A notable feature of this helicate is that its length is not limited by the lengths of its precursor subcomponents: each of the two ligands wrapped around the four copper(I) centers contains one diamine, two dialdehyde, and two monoamine residues.
View Article and Find Full Text PDF77Se-enriched CpNi(bds) (bds = 1,2-benzenediselenolate), has been synthesized and its g tensor and 77Se hyperfine tensors have been obtained from its frozen solution electron paramagnetic resonance (EPR) spectrum. These parameters are consistent with those calculated by density functional theory (DFT); it is shown that 10% of the spin is localized on each selenium and that the direction associated to the maximum 77Se couplings is aligned along the gmin direction, perpendicular to the Ni(bds) plane. EPR measurements and DFT calculations are also carried out on the 77Se enriched complex CpNi(dsit) as well on the two dithiolene analogues CpNi(bdt) and CpNi(dmit).
View Article and Find Full Text PDFA new type of stable radical ligand featuring a 1,1-bis-phosphinosulfide alkene backbone has been prepared and characterized on the basis of X-ray diffraction, EPR and DFT studies.
View Article and Find Full Text PDFBis-iminophosphoranes containing various types of linkers between two R3P==N moieties were electrochemically oxidized at controlled potential in situ in the electron spin resonance (ESR) cavity. For linkers constituted of phenylenes, conjugated phenylenes or merely a dicyanoethylenic bond, this oxidation led to well-resolved ESR spectra which were characterized by their g values and by their 1H, 14N and 31P isotropic hyperfine constants. These coupling constants agree with those calculated by DFT for the corresponding cation radicals.
View Article and Find Full Text PDFThe synthesis and characterization of two ortho-dimethyltetrathiafulvalene (o-DMTTF)-based rigid dimers containing dimethylsilicon (Me(2)Si) or dimethylgermanium (Me(2)Ge) linkers are described. Single-crystal X-ray analysis reveals planar geometry for the central 1,4-disilicon or 1,4-digermanium six-membered rings. DFT calculations provide optimized conformations in agreement with the experimental ones, and also emphasize the role of the heteroatomic linkers in the conjugation between the two redox active units.
View Article and Find Full Text PDFVarious preparations of the neutral radical [CpNi(dddt)] complex (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were investigated with CpNi sources, [Cp2Ni], [Cp2Ni](BF4), [CpNi(CO)]2, and [CpNi(cod)](BF4), and dithiolene transfer sources, O=C(dddt), the naked dithiolate (dddt(2-)), the monoanion of square-planar Ni dithiolene complex (NBu4)[Ni(dddt)2], and the neutral complex [Ni(dddt)2]. The reaction of [CpNi(cod)](BF4) with (NBu4)[Ni(dddt)2] gave the highest yield for the preparation of [CpNi(dddt)] (86%). [CpNi(ddds)] (ddds = 5,6-dihydro-1,4-dithiin-2,3-diselenolate), [CpNi(dsdt)] (dsdt = 5,6-dihydro-1,4-diselenin-2,3-dithiolate), [CpNi(bdt)] (bdt = 1,2-benzenedithiolate), and [CpNi(bds)] (bds = 1,2-benzenediselenolate) were synthesized by the reactions of [Cp2Ni] with the corresponding neutral Ni dithiolene complexes [Ni(ddds)2]2, [Ni(dsdt)2], [Ni(bdt)2], and [Ni(bds)2], respectively.
View Article and Find Full Text PDFParamagnetic complexes M(CO)5P(C6H5)2, with M = Cr, Mo, W, have been trapped in irradiated crystals of M(CO)5P(C6H5)3 (M = Cr, Mo, W) and M(CO)5PH(C6H5)2 (M = Cr, W) and studied by EPR. The radiolytic scission of a P-C or a P-H bond, responsible for the formation of M(CO)5P(C6H5)2, is consistent with both the number of EPR sites and the crystal structures. The g and 31P hyperfine tensors measured for M(CO)5P(C6H5)2 present some of the characteristics expected for the diphenylphosphinyl radical.
View Article and Find Full Text PDFCyclic voltammetry and EPR spectroscopy show that cationic phospholium groups are good electron acceptors whose reduction leads to a neutral radical where the unpaired electron is mainly delocalized on the carbon atoms of the five-membered ring. DFT calculations together with the crystal structure of phospholiums indicate that the electron addition causes a drastic diminution of the exocyclic CPC angle. The SOMO of reduced phospholium is compared to the SOMO of the phosphole radical anion.
View Article and Find Full Text PDFOxidation of the square planar Rh(I) complex [Rh(SPS(Me))(PPh3)] (SPS(Me) = 1-methyl-1-P-2.6-bis(diphenylphosphinosulfide)-3,5-(bisphenyl)-phosphinine) (1) based on mixed SPS-pincer ligand with hexachloroethane yielded the Rh(III) dichloride complex [Rh(SPS(Me))(PPh3)Cl2] (2), which was structurally characterized. The homoleptic Rh(III) complex [Rh(SPS(Me))2][Cl] (4) was obtained via the stoichiometric reaction of SPS(Me) anion (3) with [Rh(tht)3Cl3] (tht = tetrahydrothiophene).
View Article and Find Full Text PDFThe EPR spectrum of the novel radical Mes*(CH3)P--PMes* (Mes*=2,4,6-(tBu)3C6H2) was measured in the temperature range 100-300 K, and was found to be drastically temperature dependent as a result of the large anisotropy of the 31P hyperfine tensors. Below 180 K, a spectrum of the liquid solution is accurately simulated by calculating the spectral modifications due to slow tumbling of the radical. To achieve this simulation, an algorithm was developed by extending the well-known nitroxide slow-motion simulation technique for the coupling of one electron spin to two nuclear spins.
View Article and Find Full Text PDFThe radical cation of the redox active ligand 3,4-dimethyl-3',4'-bis-(diphenylphosphino)-tetrathiafulvalene (P2) has been chemically and electrochemically generated and studied by EPR spectroscopy. Consistent with DFT calculations, the observed hyperfine structure (septet due to the two methyl groups) indicates a strong delocalization of the unpaired electron on the central S2C=CS2 part of the tetrathiafulvalene (TTF) moiety and zero spin densities on the phosphine groups. In contrast with the ruthenium(0) carbonyl complexes of P2 whose one-electron oxidation directly leads to decomplexation and produces P2*+, one-electron oxidation of [Fe(P2)(CO)3] gives rise to the metal-centered oxidation species [Fe(I)(P2)(CO)3], characterized by a coupling with two 31P nuclei and a rather large g-anisotropy.
View Article and Find Full Text PDFEPR spectra show that one-electron reduction of bis(3-phenyl-6,6-(trimethylsilyl)phosphinine-2-yl)dimethylsilane (1) on an alkali mirror leads to a radical anion that is localized on a single phosphinine ring, whereas the radical anion formed from the same reaction in the presence of cryptand or from an electron transfer with sodium naphthalenide is delocalized on the two phosphinine rings. Density functional theory (DFT) calculations show that in the last species the unpaired electron is mainly confined in a loose P-P bond (3.479 A), which results from the overlap of two phosphorus p orbitals.
View Article and Find Full Text PDFTwo new, "user-friendly" derivatives of triptycene containing AsH(2) and SiH(3) fragments were synthesized. Both solids are crystalline, air-stable compounds characterized by elevated melting points and resistance toward moisture. The highly reactive As-H and Si-H bonds are protected by the presence of the surrounding phenylene hydrogen atoms, which ensure a remarkable kinetic stabilization of these primary hydrides.
View Article and Find Full Text PDFThe reduction products of two diphosphaalkenes (1 and 2) and a bis(diphosphene) (3) containing sterically encumbered ligands and corresponding to the general formulas Ar-X=Y-Ar'-Y=X-Ar, have been investigated by EPR spectroscopy. Due to steric constraints in these molecules, at least one of the dihedral angles between the CXYC plane and either the Ar plane or the Ar' plane is largely nonzero and, hence, discourages conformations that are optimal for maximal conjugation of P=X (or P=Y) and aromatic pi systems. Comparison of the experimental hyperfine couplings with those calculated by DFT on model systems containing no cumbersome substituents bound to the aromatic rings shows that addition of an electron to the nonplanar neutral systems causes the X=Y-Ar'-Y=X moiety to become planar.
View Article and Find Full Text PDFReduction of a solution of octamethylcyclo-di(m-silylphenylenedisiloxane) 4 in THF on a potassium mirror leads to EPR/ENDOR spectra characterized by a large coupling (approximately 20 MHz) with two protons, similar to the spectra obtained after reduction of the m-disilylbenzene derivative 5, consistent with a localization of the extra electron on a single ring of 4. The spectra recorded after reduction of 4 at low temperature in the presence of an equimolar amount of 18-crown-6 exhibit couplings of approximately 10 MHz with four protons and indicate that embedding the counterion in crown-ether provokes the delocalization of the unpaired electron on the two phenyl rings of 4. The measured hyperfine interactions agree with those calculated by DFT for the optimized structure of 4(.
View Article and Find Full Text PDF