A training image free, high-order sequential simulation method is proposed herein, which is based on the efficient inference of high-order spatial statistics from the available sample data. A statistical learning framework in kernel space is adopted to develop the proposed simulation method. Specifically, a new concept of aggregated kernel statistics is proposed to enable sparse data learning.
View Article and Find Full Text PDFThe present work proposes a new high-order simulation framework based on statistical learning. The training data consist of the sample data together with a training image, and the learning target is the underlying random field model of spatial attributes of interest. The learning process attempts to find a model with expected high-order spatial statistics that coincide with those observed in the available data, while the learning problem is approached within the statistical learning framework in a reproducing kernel Hilbert space (RKHS).
View Article and Find Full Text PDFMultiple-point simulations have been introduced over the past decade to overcome the limitations of second-order stochastic simulations in dealing with geologic complexity, curvilinear patterns, and non-Gaussianity. However, a limitation is that they sometimes fail to generate results that comply with the statistics of the available data while maintaining the consistency of high-order spatial statistics. As an alternative, high-order stochastic simulations based on spatial cumulants or spatial moments have been proposed; however, they are also computationally demanding, which limits their applicability.
View Article and Find Full Text PDF