Intermittency refers to the broken self-similarity of turbulent flows caused by anomalous spatiotemporal fluctuations. In this Letter, we ask how intermittency is affected by a nondissipative viscosity, known as odd viscosity (also Hall viscosity or gyroviscosity), which appears in parity-breaking fluids such as magnetized polyatomic gases, electron fluids under magnetic field, and spinning colloids or grains. Using a combination of Navier-Stokes simulations and theory, we show that intermittency is suppressed by odd viscosity at small scales.
View Article and Find Full Text PDFMorphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question.
View Article and Find Full Text PDFFully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state.
View Article and Find Full Text PDFOdd elasticity describes active elastic systems whose stress-strain relationship is not compatible with a potential energy. As the requirement of energy conservation is lifted from linear elasticity, new antisymmetric (odd) components appear in the elastic tensor. In this work we study the odd elasticity and non-Hermitian wave dynamics of active surfaces, specifically plates of moderate thickness.
View Article and Find Full Text PDFMorphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question.
View Article and Find Full Text PDFOut of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter, non-equilibrium systems, networks of neurons, social groups with conformist and contrarian members, directional interface growth phenomena and metamaterials. Although wave propagation in non-reciprocal media has recently been closely studied, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems.
View Article and Find Full Text PDFLiquid crystals are complex fluids that allow exquisite control of light propagation thanks to their orientational order and optical anisotropy. Inspired by recent advances in liquid-crystal photo-patterning technology, we propose a soft-matter platform for assembling topological photonic materials that holds promise for protected unidirectional waveguides, sensors, and lasers. Crucial to our approach is to use spatial variations in the orientation of the nematic liquid-crystal molecules to emulate the time modulations needed in a so-called Floquet topological insulator.
View Article and Find Full Text PDFMicroscopic symmetries impose strong constraints on the elasticity of a crystalline solid. In addition to the usual spatial symmetries captured by the tensorial character of the elastic tensor, hidden nonspatial symmetries can occur microscopically in special classes of mechanical structures. Examples of such nonspatial symmetries occur in families of mechanical metamaterials where a duality transformation relates pairs of different configurations.
View Article and Find Full Text PDFDualities are mathematical mappings that reveal links between apparently unrelated systems in virtually every branch of physics. Systems mapped onto themselves by a duality transformation are called self-dual and exhibit remarkable properties, as exemplified by the scale invariance of an Ising magnet at the critical point. Here we show how dualities can enhance the symmetries of a dynamical matrix (or Hamiltonian), enabling the design of metamaterials with emergent properties that escape a standard group theory analysis.
View Article and Find Full Text PDFChiral active fluids are known to have anomalous transport properties such as the so-called odd viscosity. In this paper, we provide a microscopic mechanism for how such anomalous transport coefficients can emerge. We construct an Irving-Kirkwood-type stress tensor for chiral liquids and express the transport coefficients in terms of orientation-averaged intermolecular forces and distortions of the pair correlation function induced by a flow field.
View Article and Find Full Text PDFFluids in which both time reversal and parity are broken can display a dissipationless viscosity that is odd under each of these symmetries. Here, we show how this odd viscosity has a dramatic effect on topological sound waves in fluids, including the number and spatial profile of topological edge modes. Odd viscosity provides a short-distance cutoff that allows us to define a bulk topological invariant on a compact momentum space.
View Article and Find Full Text PDFSoft materials can self-assemble into highly structured phases that replicate at the mesoscopic scale the symmetry of atomic crystals. As such, they offer an unparalleled platform to design mesostructured materials for light and sound. Here, we present a bottom-up approach based on self-assembly to engineer 3D photonic and phononic crystals with topologically protected Weyl points.
View Article and Find Full Text PDFWe define a new Z2-valued index to characterize the topological properties of periodically driven two dimensional crystals when the time-reversal symmetry is enforced. This index is associated with a spectral gap of the evolution operator over one period of time. When two such gaps are present, the Kane-Mele index of the eigenstates with eigenvalues between the gaps is recovered as the difference of the gap indices.
View Article and Find Full Text PDF