Publications by authors named "Michel Feidt"

This paper presents a continuation of the Chambadal model optimization of the irreversible Carnot engine. We retrieved the results presented in the Special Issue "Carnot Cycle and Heat Engine Fundamentals and Applications II" and enriched them with new contributions that allowed comparing two points of view: (1) the now classical one, centered on entropy production in the four processes of the cycle, which introduces the action of entropy production, with several sequential optimizations; (2) the new one that is relative to an energy degradation approach. The same démarche of sequential optimization was used, but the results were slightly different.

View Article and Find Full Text PDF

We revisit the optimal performance of a thermoelectric generator within the endoreversible approximation, while imposing a finite physical dimensions constraint in the form of a fixed total area of the heat exchangers. Our analysis is based on the linear-irreversible law for heat transfer between the reservoir and the working medium, in contrast to Newton's law usually assumed in literature. The optimization of power output is performed with respect to the thermoelectric current as well as the fractional area of the heat exchangers.

View Article and Find Full Text PDF

This editorial introduces the second Special Issue entitled "Carnot Cycle and Heat Engine Fundamentals and Applications II" https://www [...

View Article and Find Full Text PDF

This paper presents a new step in the optimization of the Chambadal model of the Carnot engine. It allows a sequential optimization of a model with internal irreversibilities. The optimization is performed successively with respect to various objectives (e.

View Article and Find Full Text PDF

An irreversible Carnot cycle engine operating as a closed system is modeled using the Direct Method and the First Law of Thermodynamics for processes with Finite Speed. Several models considering the effect on the engine performance of external and internal irreversibilities expressed as a function of the piston speed are presented. External irreversibilities are due to heat transfer at temperature gradient between the cycle and heat reservoirs, while internal ones are represented by pressure losses due to the finite speed of the piston and friction.

View Article and Find Full Text PDF

The need for cooling is more and more important in current applications, as environmental constraints become more and more restrictive. Therefore, the optimization of reverse cycle machines is currently required. This optimization could be split in two parts, namely, (1) the design optimization, leading to an optimal dimensioning to fulfill the specific demand (static or nominal steady state optimization); and (2) the dynamic optimization, where the demand fluctuates, and the system must be continuously adapted.

View Article and Find Full Text PDF
Article Synopsis
  • - This issue focuses on the Carnot cycle and thermomechanical engines, wrapping up two years of collaborative work.
  • - It features a collection of ten papers that explore various aspects of this topic.
  • - The editorial serves as an introduction to the findings and contributions presented in the issue.
View Article and Find Full Text PDF

Several optimization models of irreversible reverse cycle machines have been developed based on different optimization criteria in the literature, most of them using linear heat transfer laws at the source and sink. This raises the issue how close to actual operation conditions they are, since the heat transfer law on the phase-change processes is dependent on Δ. This paper addresses this issue by proposing a general model for study and optimization of thermal machines with two heat reservoirs applied to a Carnot-like refrigerator, with non-linear heat transfer laws and internal and external irreversibility.

View Article and Find Full Text PDF